Skip to main content

GenoScan: Genomic Scanner for Putative miRNA Precursors

  • Conference paper
Book cover Bioinformatics Research and Applications (ISBRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8492))

Included in the following conference series:

  • 2194 Accesses

Abstract

The significance of miRNAs has been clarified over the last decade as thousands of these small non-coding RNAs have been found in a wide variety of species. By binding to specific target mRNAs, miRNAs act as negative regulators of gene expression in many different biological processes. Computational approaches for discovery of miRNAs in genomes usually take the form of an algorithm that scans sequences for miRNA-characteristic hairpins, followed by classification of those hairpins as miRNAs or non-miRNAs. In this study, two new approaches to genome-scale miRNA discovery are presented and evaluated. These methods, one ensemble-based and one using logistic regression, have been designed to detect miRNA candidates without relying on conservation or transcriptome data, and to achieve high-confidence predictions in reasonable computational time. GenoScan achieves high accuracy with a good balance between sensitivity and specificity. In a benchmark evaluation including 15 previously published methods, the regression-based approach in GenoScan achieved the highest classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffiths-Jones, S., Saini, H.K., van Dongen, S., Enright, A.J.: miRBase: tools for microRNA genomics. Nucleic Acids Research 36(Database issue), D154–D158 (2008)

    Google Scholar 

  2. Huang, Y., Zou, Q., Wang, S.P., Tang, S.M., Zhang, G.Z., Shen, X.J.: The discovery approaches and detection methods of microRNAs. Molecular Biology Reports 38(6), 4125–4135 (2011)

    Article  Google Scholar 

  3. Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009)

    Article  Google Scholar 

  4. Ghildiyal, M., Zamore, P.D.: Small silencing RNAs: an expanding universe. Nature Reviews. Genetics 10(2), 94–108 (2009)

    Article  Google Scholar 

  5. He, L., Hannon, G.J.: MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics 5(7), 522–531 (2004)

    Article  Google Scholar 

  6. Friedman, R.C., Farh, K.K., Burge, C.B., Bartel, D.P.: Most mammalian mRNAs are conserved targets of microRNAs. Genome Research 19(1), 92–105 (2009)

    Article  Google Scholar 

  7. Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., Burge, C.B., Bartel, D.P.: The microRNAs of Caenorhabditis elegans. Genes & Development 17(8), 991–1008 (2003)

    Article  Google Scholar 

  8. Kadri, S., Hinman, V., Benos, P.V.: HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics 10(suppl. 1), S35 (2009)

    Google Scholar 

  9. Lai, E.C., Tomancak, P., Williams, R.W., Rubin, G.M.: Computational identification of Drosophila microRNA genes. Genome Biology 4(7), R42 (2003)

    Google Scholar 

  10. Huang, T., Fan, B., Rothschild, M.F., Hu, Z., Li, K., Zhao, S.: MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics 8, 341 (2007)

    Article  Google Scholar 

  11. Adai, A., Johnson, C., Mlotshwa, S., Archer-Evans, S., Manocha, V., Vance, V., Sundaresan, V.: Computational prediction of miRNAs in Arabidopsis thaliana. Genome Research 15(1), 78–91 (2005)

    Article  Google Scholar 

  12. Friedländer, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., Rajewsky, N.: Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology 26(4), 407–415 (2008)

    Article  Google Scholar 

  13. Lindow, M., Jacobsen, A., Nygaard, S., Mang, Y., Krogh, A.: Intragenomic matching reveals a huge potential for miRNA-mediated regulation in plants. PLoS Computational Biology 3(11), e238 (2007)

    Google Scholar 

  14. Thieme, C.J., Gramzow, L., Lobbes, D., Theissen, G.: SplamiR–prediction of spliced miRNAs in plants. Bioinformatics 27(9), 1215–1223 (2011)

    Article  Google Scholar 

  15. Bentwich, I.: Prediction and validation of microRNAs and their targets. FEBS Letters 579(26), 5904–5910 (2005)

    Article  Google Scholar 

  16. Lorenz, R., Bernhart, S.H., Höner, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Algorithms for Molecular Biology: AMB 6, 26 (2011)

    Article  Google Scholar 

  17. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31(13), 3406–3415 (2003)

    Article  Google Scholar 

  18. Ohler, U., Yekta, S., Lim, L.P., Bartel, D.P., Burge, C.B.: Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 10(9), 1309–1322 (2004)

    Article  Google Scholar 

  19. Xue, C., Li, F., He, T., Liu, G.-P., Li, Y., Zhang, X.: Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6, 310 (2005)

    Article  Google Scholar 

  20. Batuwita, R., Palade, V.: microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25(8), 989–995 (2009)

    Article  Google Scholar 

  21. Wu, Y., Wei, B., Liu, H., Li, T., Rayner, S.: MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 12(1), 107 (2011)

    Article  Google Scholar 

  22. Nam, J., Shin, K., Han, J., Lee, Y., Kim, V.N., Zhang, B.: Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Research 33(11), 3570–3581 (2005)

    Article  Google Scholar 

  23. Terai, G., Komori, T., Asai, K., Kin, T.: miRRim: a novel system to find conserved miRNAs with high sensitivity and specificity. RNA 13(12), 2081–2090 (2007)

    Article  Google Scholar 

  24. Agarwal, S., Vaz, C., Bhattacharya, A., Srinivasan, A.: Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC Bioinformatics 11(suppl. 1), S29 (2010)

    Google Scholar 

  25. Jiang, P., Wu, H., Wang, W., Ma, W., Sun, X., Lu, Z.: MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Research 35(Web Server issue), W339–W344 (2007)

    Google Scholar 

  26. Gudyś, A., Szcześniak, M.W., Sikora, M., Makałowska, I.: HuntMi: an efficient and taxon-specific approach in pre-miRNA identification. BMC Bioinformatics 14, 83 (2013)

    Article  Google Scholar 

  27. Rahman, M.E., Islam, R., Islam, S., Mondal, S.I., Amin, M.R.: MiRANN: a reliable approach for improved classification of precursor microRNA using Artificial Neural Network model. Genomics 99(4), 189–194 (2012)

    Article  Google Scholar 

  28. Tyagi, S., Vaz, C., Gupta, V., Bhatia, R., Maheshwari, S., Srinivasan, A., Bhattacharya, A.: CID-miRNA: a web server for prediction of novel miRNA precursors in human genome. Biochemical and Biophysical Research Communications 372(4), 831–834 (2008)

    Article  Google Scholar 

  29. Jha, A., Chauhan, R., Mehra, M., Singh, H.R., Shankar, R.: miR-BAG: Bagging Based Identification of MicroRNA Precursors. PloS One 7(9), e45782 (2012)

    Google Scholar 

  30. Lertampaiporn, S., Thammarongtham, C., Nukoolkit, C., Kaewkamnerdpong, B., Ruengjitchatchawalya, M.: Heterogeneous ensemble approach with discriminative features and modified-SMOTEbagging for pre-miRNA classification. Nucleic Acids Research 41(1), e21 (2012)

    Google Scholar 

  31. Mathelier, A., Carbone, A.: MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 26(18), 2226–2234 (2010)

    Article  Google Scholar 

  32. Hackenberg, M., Rodríguez-Ezpeleta, N., Aransay, A.M.: miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Research 8(Web Server issue), W132–W138 (2011)

    Google Scholar 

  33. Guan, D.-G., Liao, J.-Y., Qu, Z.-H., Zhang, Y., Qu, L.-H.: mirExplorer: detecting microRNAs from genome and next generation sequencing data using the AdaBoost method with transition probability matrix and combined features. RNA Biology 8(5), 922–934 (2011)

    Article  Google Scholar 

  34. Kozomara, A., Griffiths-Jones, S.: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research 39(Database issue), D152–D157 (2011)

    Google Scholar 

  35. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

    Article  Google Scholar 

  36. Jiang, M., Anderson, J., Gillespie, J., Mayne, M.: uShuffle: a useful tool for shuffling biological sequences while preserving the k-let counts. BMC Bioinformatics 9(i), 192 (2008)

    Article  Google Scholar 

  37. Pruitt, K.D., Tatusova, T., Brown, G.R., Maglott, D.R.: NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Research 40(Database issue), D130–D135 (2012)

    Google Scholar 

  38. Jones-Rhoades, M.W., Bartel, D.P.: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell 14(6), 787–799 (2004)

    Article  Google Scholar 

  39. Liu, X., He, S., Skogerbø, G., Gong, F., Chen, R.: Integrated sequence-structure motifs suffice to identify microRNA precursors. PloS One 7(3), e32797 (2012)

    Google Scholar 

  40. Shen, W., Chen, M., Wei, G., Li, Y.: MicroRNA Prediction Using a Fixed-Order Markov Model Based on the Secondary Structure Pattern. PloS One 7(10), e48236 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ulfenborg, B., Klinga-Levan, K., Olsson, B. (2014). GenoScan: Genomic Scanner for Putative miRNA Precursors . In: Basu, M., Pan, Y., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2014. Lecture Notes in Computer Science(), vol 8492. Springer, Cham. https://doi.org/10.1007/978-3-319-08171-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08171-7_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08170-0

  • Online ISBN: 978-3-319-08171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics