Skip to main content

Learning Two-Input Linear and Nonlinear Analog Functions with a Simple Chemical System

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

The current biochemical information processing systems behave in a pre-determined manner because all features are defined during the design phase. To make such unconventional computing systems reusable and programmable for biomedical applications, adaptation, learning, and self-modification based on external stimuli would be highly desirable. However, so far, it has been too challenging to implement these in wet chemistries. In this paper we extend the chemical perceptron, a model previously proposed by the authors, to function as an analog instead of a binary system. The new analog asymmetric signal perceptron learns through feedback and supports Michaelis-Menten kinetics. The results show that our perceptron is able to learn linear and nonlinear (quadratic) functions of two inputs. To the best of our knowledge, it is the first simulated chemical system capable of doing so. The small number of species and reactions and their simplicity allows for a mapping to an actual wet implementation using DNA-strand displacement or deoxyribozymes. Our results are an important step toward actual biochemical systems that can learn and adapt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, W., Li, S., Mair, L., Ahmed, S., Huang, T.J., Mallouk, T.E.: Acoustic Propulsion of Nanorod Motors Inside Living Cells. Angewandte Chemie International Edition 53(12), 3201–3204 (2014)

    Article  Google Scholar 

  2. LaVan, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nature Biotechnology 21(10), 1184–1191 (2003)

    Article  Google Scholar 

  3. Haykin, S.: Neural networks and learning machines, 3rd edn. Pearson, New Jersey (2009)

    Google Scholar 

  4. Bray, D.: Protein molecules as computational elements in living cells. Nature 376(6538), 307–312 (1995)

    Article  Google Scholar 

  5. Mills, A.P., Yurke, B., Platzman, P.M.: Article for analog vector algebra computation. Biosystems 52(1-3), 175–180 (1999)

    Article  Google Scholar 

  6. Kim, J., Hopfield, J.J., Winfree, E.: Neural network computation by in vitro transcriptional circuits. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 681–688. MIT Press (2004)

    Google Scholar 

  7. Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organisation in the brain. Psychological Review 65, 368–408 (1958)

    Article  MathSciNet  Google Scholar 

  8. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)

    Article  Google Scholar 

  9. Banda, P., Teuscher, C., Lakin, M.R.: Online learning in a chemical perceptron. Artificial Life 19(2), 195–219 (2013)

    Article  Google Scholar 

  10. Banda, P., Teuscher, C., Stefanovic, D.: Training an asymmetric signal perceptron through reinforcement in an artificial chemistry. Journal of the Royal Society Interface 11(93) (2014)

    Google Scholar 

  11. Moles, J., Banda, P., Teuscher, C.: Delay line as a chemical reaction network (under review). Parallel Processing Letters (2014)

    Google Scholar 

  12. Espenson, J.: Chemical kinetics and reaction mechanisms. McGraw-Hill, Singapore (1995)

    Google Scholar 

  13. Copeland, R.A.: Enzymes: A practical introduction to structure, mechanism, and data analysis, 2nd edn. John Wiley & Sons, Inc., New York (2002)

    Google Scholar 

  14. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    Article  Google Scholar 

  15. Rojas, R.: Neural networks: A systematic introduction. Springer, Berlin (1996)

    Google Scholar 

  16. Lakin, M.R., Minnich, A., Lane, T., Stefanovic, D.: Towards a biomolecular learning machine. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 152–163. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nature Biotechnology 21(9), 1069–1074 (2003)

    Article  Google Scholar 

  18. Liu, J., Cao, Z., Lu, Y.: Functional nucleic acid sensors. Chemical Reviews 109(5), 1948–1998 (2009); PMID: 19301873

    Google Scholar 

  19. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences of the United States of America 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  20. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry 3(2), 103–113 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Banda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Banda, P., Teuscher, C. (2014). Learning Two-Input Linear and Nonlinear Analog Functions with a Simple Chemical System. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics