Skip to main content

Introduction

  • Chapter
  • First Online:

Abstract

The term juvenile idiopathic arthritis (JIA) encompasses all forms of arthritis that begin before the age of 16 years, persist for more than 6 weeks, and are of unknown cause [1]. Due to the lack of a single pathognomonic clinical or laboratory feature, the diagnosis of JIA is one of exclusion that gathers all forms of childhood chronic arthritis whose etiology cannot be identified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet. 2007;369:767-778.

    Google Scholar 

  2. Petty RE, Cassidy JT. Chronic arthritis in childhood. In: Cassidy JT, Petty RE, Laxer RM, Lindsley CB, eds. Textbook of Pediatric Rheumatology. 6th edn. Philadelphia, PA: Elsevier Saunders; 2011;211-235.

    Google Scholar 

  3. Szer IS, Kimura Y, Malleson PN, Southwood T, eds. Arthritis in Children and Adolescents. New York, NY: Oxford University Press; 2006.

    Google Scholar 

  4. De Benedetti F, Schneider R. Systemic juvenile idiopathic arthritis. In: Cassidy JT, Petty RE, Laxer RM, Lindsley CB, eds. Textbook of Pediatric Rheumatology. 6th edn. Philadelphia, PA: Elsevier Saunders; 2011;236-248.

    Google Scholar 

  5. Fujikawa S, Okuni M. Clinical analysis of 570 cases with juvenile rheumatoid arthritis: results of a nationwide retrospective survey in Japan. Acta Paediatr Jpn. 1997;39:245-249.

    Google Scholar 

  6. Schwartz MM, Simpson P, Kerr KL, Jarvis JN. Juvenile rheumatoid arthritis in African Americans. J Rheumatol. 1997;24:1826-1829.

    Google Scholar 

  7. Prakken B, Albani S, Martini A. Juvenile idiopathic arthritis. Lancet. 2011;377:2138-2149.

    Google Scholar 

  8. Lindsley CB. Seasonal variation in systemic onset juvenile rheumatoid arthritis. Arthritis Rheum 1987;30:838-839.

    Google Scholar 

  9. Oen K, Fast M, Postl B. Epidemiology of juvenile rheumatoid arthritis in Manitoba, Canada, 1975-92: Cycles in incidence. J Rheumatol. 1995;22:745-750.

    Google Scholar 

  10. Uziel Y, Pomeranz A, Brik R, et al. Seasonal variation in systemic onset juvenile rheumatoid arthritis in Israel. J Rheumatol. 1999;26:1187-1189.

    Google Scholar 

  11. Zonneveld-Huijssoon E, Ronaghy A, Van Rossum MA, et al. Safety and efficacy of meningococcal c vaccination in juvenile idiopathic arthritis. Arthritis Rheum. 2007;56:639-646.

    Google Scholar 

  12. Heijstek MW, Pileggi GC, Zonneveld-Huijssoon E, et al. Safety of measles, mumps and rubella vaccination in juvenile idiopathic arthritis. Ann Rheum Dis. 2007;66:1384-1387.

    Google Scholar 

  13. Ellis JA, Munro JE, Ponsonby AL. Possible environmental determinants of juvenile idiopathic arthritis. Rheumatology (Oxford). 2010;49:411-425.

    Google Scholar 

  14. Carlens C, Jacobsson LT, Brandt L, et al. Perinatal characteristics, early life infections, and later risk of rheumatoid arthritis and juvenile idiopathic arthritis. Ann Rheum Dis. 2009;68:1159–1164.

    Google Scholar 

  15. Jaakkola JJ, Gissler M. Maternal smoking in pregnancy as a determinant of rheumatoid arthritis and other inflammatory polyarthropathies during the first 7 years of life. Int J Epidemiol. 2005;34:664–671.

    Google Scholar 

  16. Cobb JE, Hinks A, Thomson W. The genetics of juvenile idiopathic arthritis: current understanding and future prospects. Rheumatology (Oxford). 2014;53:592-599.

    Google Scholar 

  17. Glass DN, Giannini EH. Juvenile rheumatoid arthritis as a complex genetic trait. Arthritis Rheum. 1999;42:2261-2268.

    Google Scholar 

  18. Prahalad S, O’Brien E, Fraser AM, et al. Familial aggregation of juvenile idiopathic arthritis. Arthritis Rheum 2004;50:4022-4027.

    Google Scholar 

  19. Savolainen A, Saila H, Kotaniemi K, et al. Magnitude of the genetic component in juvenile idiopathic arthritis. Ann Rheum Dis. 2000;59:1001.

    Google Scholar 

  20. Prahalad S, Zeft AS, Pimentel R, et al. Quantification of the familial contribution to juvenile idiopathic arthritis. Arthritis Rheum. 2010;62:2525-2529.

    Google Scholar 

  21. Ansell BM, Bywaters EG, Lawrence JS. Familial aggregation and twin studies in Still’s disease. Juvenile chronic polyarthritis. Rheumatology. 1969;2:37-61.

    Google Scholar 

  22. Lander ES. The new genomics: global views of biology. Science. 1996;274:536-539.

    Google Scholar 

  23. Hirschhorn JN. Genomewide association studies–illuminating biologic pathways. N Engl J Med. 2009;360:1699-1701.

    Google Scholar 

  24. Hinks A, Barton A, Shephard N, et al. Identification of a novel susceptibility locus for juvenile idiopathic arthritis by genome-wide association analysis. Arthritis Rheum. 2009;60:258-263.

    Google Scholar 

  25. Thompson SD, Sudman M, Ramos PS, et al. The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTPN2, COG6, and ANGPT1. Arthritis Rheum. 2010;62:3265-3276.

    Google Scholar 

  26. Thompson SD, Marion MC, Sudman M, et al. Genome-wide association analysis of juvenile idiopathic arthritis identifies a new susceptibility locus at chromosomal region 3q13. Arthritis Rheum. 2012;64:2781-2791.

    Google Scholar 

  27. Prahalad S. Genetics of juvenile idiopathic arthritis: an update. Curr Opin Rheumatol. 2004;16:588-594.

    Google Scholar 

  28. Thomson W, Donn R. Juvenile idiopathic arthritis genetics - what’s new? What’s next? Arthritis Res. 2002;4:302-306.

    Google Scholar 

  29. Thomson W, Barrett JH, Donn R, et al. Juvenile idiopathic arthritis classified by the ILAR criteria: HLA associations in UK patients. Rheumatology (Oxford.) 2002;41:1183-1189.

    Google Scholar 

  30. Hinks A, Cobb J, Marion MC, et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet. 2013;45:664-669.

    Google Scholar 

  31. Rosen P, Thompson S, Glass D. Non-HLA gene polymorphisms in juvenile rheumatoid arthritis. Clin Exp Rheumatol. 2003;21:650-656.

    Google Scholar 

  32. Fife MS, Gutierrez A, Ogilvie EM, et al. Novel IL10 gene family associations with systemic juvenile idiopathic arthritis. Arthritis Res Ther. 2006;8:R148.

    Google Scholar 

  33. Ogilvie EM, Khan A, Hubank M, Kellam P, Woo P. Specific gene expression profiles in systemic juvenile idiopathic arthritis. Arthritis Rheum. 2007;56:1954-1965.

    Google Scholar 

  34. Barnes MG, Grom AA, Thompson SD, et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60:2102-2112.

    Google Scholar 

  35. Ogilvie EM, Fife MS, Thompson SD, et al. The -174G allele of the interleukin-6 gene confers susceptibility to systemic arthritis in children: a multicenter study using simplex and multiplex juvenile idiopathic arthritis families. Arthritis Rheum. 2003;48:3202-3206.

    Google Scholar 

  36. Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemiconset juvenile chronic arthritis. J Clin Invest. 1998;102:1369-1376.

    Google Scholar 

  37. Donn R, Alourfi Z, Zeggini E, et al. A functional promoter haplotype of macrophage migration inhibitory factor is linked and associated with juvenile idiopathic arthritis. Arthritis Rheum. 2004;50:1604-1610.

    Google Scholar 

  38. Petty RE, Cassidy JT. Chronic arthritis in childhood. In: Cassidy JT, Petty RE, Laxer RM, Lindsley CB, eds. Textbook of Pediatric Rheumatology. 6th edn. Philadelphia, PA: Elsevier Saunders; 2011:211-235.

    Google Scholar 

  39. Szer IS, Kimura Y, Malleson PN, Southwood T, eds. Arthritis in Children and Adolescents, New York, NY: Oxford University Press; 2006.

    Google Scholar 

  40. Murray KJ, Luyrink L, Grom AA, et al. Immunohistological characteristics of T cell infiltrates in different forms of childhood onset chronic arthritis. J Rheumatol. 1996;23:2116-2124.

    Google Scholar 

  41. Gregorio A, Gambini C, Gerloni V, et al. Lymphoid neogenesis in juvenile idiopathic arthritis correlates with ANA positivity and plasma cells infiltration. Rheumatology (Oxford). 2007;46:308-313.

    Google Scholar 

  42. Wedderburn LR, Robinson N, Patel A, et al. Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis. Arthritis Rheum. 2000;43:765–74.

    Google Scholar 

  43. Gattorno M, Prigione I, Moranti F, et al. Phenotypic and functional characterization of CCR7 + and CCR7- CD4 + memory T cells homing to the joints in juvenile idiopathic arthritis. Arthritis Res Ther. 2005;7:R256–R267.

    Google Scholar 

  44. Scola MP, Imagawa T, Boivin GP, et al. Expression of angiogenic factors in juvenile rheumatoid arthritis: correlation with revascularization of human synovium engrafted into SCID mice. Arthritis Rheum. 2001;44:794-801.

    Google Scholar 

  45. Gattorno M, Gregorio A, Ferlito F, et al. Synovial expression of osteopontin correlates with angiogenesis in juvenile idiopathic arthritis. Rheumatology. 2004;43:1091-1096.

    Google Scholar 

  46. Gattorno M, Gerloni V, Morando A, et al. Synovial membrane expression of matrix metalloproteinases and tissue inhibitor 1 in juvenile idiopathic arthritides. J Rheumatol. 2002;29:1774-1779.

    Google Scholar 

  47. Murray KJ, Grom AA, Thompson SD, Lieuwen D, Passo MH, Glass DN. Contrasting cytokine profiles in the synovium of different forms of juvenile rheumatoid arthritis and juvenile spondyloarthropathy: Prominence of interleukin 4 in restricted disease. J Rheumatol. 1998;25:1388-1398.

    Google Scholar 

  48. De Benedetti F, Ravelli A, Martini A. Cytokines in juvenile rheumatoid arthritis. Curr Opin Rheumatol. 1997;9:428-433.

    Google Scholar 

  49. Firestein GS. Etiology and pathogenesis of rheumatoid arthritis. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JR eds. Kelley’s Textbook of Rheumatology. 7th edn. Philadelphia, PA: Elsevier Saunders;2005:996–1042.

    Google Scholar 

  50. Ferucci ED, Majka DS, Parrish LA, et al. Antibodies against cyclic citrullinated peptide are associated with HLA-DR4 in simplex and multiplex polyarticular-onset juvenile rheumatoid arthritis. Arthritis Rheum. 2005;52:239-246.

    Google Scholar 

  51. Kim TH, Uhm WS, Inman RD. Pathogenesis of ankylosing spondylitis and reactive arthritis. Curr Opin Rheumatol. 2005;17:400-405.

    Google Scholar 

  52. Mielants H, Veys EM, Goemaere S, Cuvelier C, De VM. A prospective study of patients with spondyloarthropathy with special reference to HLA-B27 and to gut histology. J Rheumatol. 1993;20:1353-1358.

    Google Scholar 

  53. Mielants H, Veys EM, Cuvelier C, et al. The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J Rheumatol. 1995;22:2279-2284.

    Google Scholar 

  54. Stoll ML, Kumar R, Morrow CD, et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther. 2014;16:486.

    Google Scholar 

  55. Colbert RA. The immunobiology of HLA-B27: variations on a theme. Curr Mol Med. 2004;4:21-30.

    Google Scholar 

  56. Benjamin M, McGonagle D. The enthesis organ concept and its relevance to the spondyloarthropathies. Adv Exp Med Biol. 2009;649:57-70.

    Google Scholar 

  57. Ruprecht CR, Gattorno M, Ferlito F, et al. Coexpression of CD25 and CD27 identifies FoxP3 + regulatory T cells in inflamed synovia. J Exp Med. 2005;201:1793-1803.

    Google Scholar 

  58. De Kleer IM, Wedderburn LR, Taams LS, et al. CD4 + CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol. 2004;172:6435-6443.

    Google Scholar 

  59. De Kleer IM, Kamphuis SM, Rijkers GT, et al. The spontaneous remission of juvenile idiopathic arthritis is characterized by CD30 + T cells directed to human heat-shock protein 60 capable of producing the regulatory cytokine interleukin-10. Arthritis Rheum. 2003;48:2001-2010.

    Google Scholar 

  60. Kamphuis S, Kuis W, de JW, et al. Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet. 2005;366:50-56.

    Google Scholar 

  61. Albani S, Prakken B. T cell epitope-specific immune therapy for rheumatic diseases. Arthritis Rheum. 2006;54:19-25.

    Google Scholar 

  62. Massa M, Mazzoli F, Pignatti P, et al. Proinflammatory responses to self HLA epitopes are triggered by molecular mimicry to Epstein-Barr virus proteins in oligoarticular juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:2721-2729.

    Google Scholar 

  63. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol. 2009;27:621-668.

    Google Scholar 

  64. Vastert SJ, Kuis W, Grom AA. Systemic JIA: new developments in the understanding of the pathophysiology and therapy. Best Pract Res Clin Rheumatol. 2009;23:655-664.

    Google Scholar 

  65. Martini A. It is time to rethink juvenile idiopathic arthritis classification and nomenclature. Ann Rheum Dis. 2012;71:1437-1439.

    Google Scholar 

  66. De Benedetti F, Massa M, Robbioni P, Ravelli A, Burgio GR, Martini A. Correlation of serum interleukin-6 levels with joint involvement and thrombocytosis in systemic juvenile rheumatoid arthritis. Arthritis Rheum. 1991;34:1158-1163.

    Google Scholar 

  67. De Benedetti F, Massa M, Pignatti P, Albani S, Novick D, Martini A. Serum soluble interleukin 6 (IL-6) receptor and IL-6/soluble IL- 6 receptor complex in systemic juvenile rheumatoid arthritis. J Clin Invest. 1994;93:2114-2119.

    Google Scholar 

  68. Martini A, Ravelli A, Di Fuccia G, Rosti V, Cazzola M, Barosi G. Intravenous iron therapy for severe anaemia in systemic- onset juvenile chronic arthritis. Lancet. 1994;344:1052-1054.

    Google Scholar 

  69. Cazzola M, Ponchio L, De Benedetti F, et al. Defective iron supply for erythropoiesis and adequate endogenous erythropoietin production in the anemia associated with systemiconset juvenile chronic arthritis. Blood. 1996;87:4824-4830.

    Google Scholar 

  70. De Benedetti F, Alonzi T, Moretta A, et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J Clin Invest. 1997;99:643-650.

    Google Scholar 

  71. De Benedetti F, Martini A. Is systemic juvenile rheumatoid arthritis an interleukin 6 mediated disease? J Rheumatol. 1998;25:203-207.

    Google Scholar 

  72. Yokota S, Imagawa T, Mori M, et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebocontrolled, withdrawal phase III trial. Lancet. 2008;371:998-1006.

    Google Scholar 

  73. De Benedetti F, Brunner HI, Ruperto N, et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367:2385-2395.

    Google Scholar 

  74. Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005;201:1479-1486.

    Google Scholar 

  75. Stojanov S, Kastner DL. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol. 2005;17:586-599.

    Google Scholar 

  76. Hoffman HM, Rosengren S, Boyle DL, et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet. 2004;364:1779-1785.

    Google Scholar 

  77. Gattorno M, Martini A. Inherited autoinflammatory syndromes: an expanding new group of chronic inflammatory diseases. Clin Exp Rheumatol. 2005;23:133-136.

    Google Scholar 

  78. de Jager W, Hoppenreijs EP, Wulffraat NM, Wedderburn LR, Kuis W, Prakken BJ. Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a crosssectional study. Ann Rheum Dis. 2007;66:589-598.

    Google Scholar 

  79. Vastert S, Prakken B. Update on research and clinical translation on specific clinical areas: from bench to bedside: how insight in immune pathogenesis can lead to precision medicine of severe juvenile idiopathic arthritis. Best Pract Res Clin Rheumatol. 2014;28:229-246.

    Google Scholar 

  80. Shimizu M, Nakagishi Y, Yachie A. Distinct subsets of patients with systemic juvenile idiopathic arthritis based on their cytokine profiles. Cytokine. 2013;61:345-348.

    Google Scholar 

  81. Gattorno M, Piccini A, Lasiglie D, et al. The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2008;58:1505-1515.

    Google Scholar 

  82. Filipovich AH. Hemophagocytic lymphohistiocytosis (HLH) and related disorders. Hematology Am Soc Hematol Educ Program. 2009;127-131.

    Google Scholar 

  83. Favara BE, Feller AC, Pauli M, et al. Contemporary classification of histiocytic disorders. Med Pediatr Oncol. 1997;29:157-166.

    Google Scholar 

  84. Henter JI, Horne A, Arico M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124-131.

    Google Scholar 

  85. Sullivan KE, Delaat CA, Douglas SD, Filipovich AH. Defective natural killer cell function in patients with hemophagocytic lymphohistiocytosis and in first degree relatives. Pediatr Res. 1998;44:465-468.

    Google Scholar 

  86. Stepp SE, Dufourcq-Lagelouse R, Le DF, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957-1959.

    Google Scholar 

  87. Feldmann J, Callebaut I, Raposo G, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115:461-473.

    Google Scholar 

  88. Zur SU, Rohr J, Seifert W, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;85:482-492.

    Google Scholar 

  89. Zur SU, Schmidt S, Kasper B, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14:827-834.

    Google Scholar 

  90. Janka G, Zur SU. Familial and acquired hemophagocytic lymphohistiocytosis. Hematology Am Soc Hematol Educ Program. 2005;82-88.

    Google Scholar 

  91. Grom AA, Mellins ED. Macrophage activation syndrome: advances towards understanding pathogenesis. Curr Opin Rheumatol. 2010;22:561-566.

    Google Scholar 

  92. Grom AA. Natural killer cell dysfunction. A common pathway in systemic-onset juvenile rheumatoid arthritis, macrophage activation syndrome, and hemophagocytic lymphohistiocytosis? Arthritis Rheum. 2004;50:689-698.

    Google Scholar 

  93. Grom AA, Villanueva J, Lee S, Goldmuntz EA, Passo MH, Filipovich A. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr. 2003;142:292-296.

    Google Scholar 

  94. Vastert SJ, van WR, D’Urbano LE, et al. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2010;49:441-449.

    Google Scholar 

  95. Villanueva J, Lee S, Giannini EH, et al. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis Res Ther. 2005;7:R30-R37.

    Google Scholar 

  96. Hazen MM, Woodward AL, Hofmann I, et al. Mutations of the hemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis. Arthritis Rheum. 2008;58:567-570.

    Google Scholar 

  97. Yanagimachi M, Naruto T, Miyamae T, et al. Association of IRF5 polymorphisms with susceptibility to macrophage activation syndrome in patients with juvenile idiopathic arthritis. J Rheumatol. 2011;38:769-774.

    Google Scholar 

  98. Kaufman KM, Linghu B, Szustakowski JD, et al. Whole-exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2014;66:3486-3495.

    Google Scholar 

  99. Behrens EM, Canna SW, Slade K, et al. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J Clin Invest. 2011;121:2264-2277.

    Google Scholar 

  100. Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8 + T cells and interferon gamma are essential for the disorder. Blood. 2004;104:735-743.

    Google Scholar 

  101. Billiau AD, Roskams T, Van Damme-Lombaerts R, Matthys P, Wouters C. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6- and TNF-a-producing macrophages. Blood. 2005;105:1648-1651.

    Google Scholar 

  102. Maeno N, Takei S, Nomura Y, Imanaka H, Hokonohara M, Miyata K. Highly elevated serum levels of interleukin-18 in systemic juvenile idiopathic arthritis but not in other juvenile idiopathic arthritis subtypes or in Kawasaki disease: comment on the article by Kawashima, et al. Arthritis Rheum. 2002;46:2539-2541.

    Google Scholar 

  103. Mazodier K, Marin V, Novick D, et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood. 2005;106:3483-3489.

    Google Scholar 

  104. Ravelli A, Grom AA, Behrens EM, Cron RQ. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: diagnosis, genetics, pathophysiology and treatment. Genes Immun. 2012;13:289-298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Ravelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ravelli, A. (2016). Introduction. In: Handbook of Juvenile Idiopathic Arthritis. Adis, Cham. https://doi.org/10.1007/978-3-319-08102-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08102-1_1

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-08101-4

  • Online ISBN: 978-3-319-08102-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics