Skip to main content

7 Specific Orthopaedic Imaging Analysis Software: Clinical Benefit for TKR Revision Surgeon

  • Chapter
The Unhappy Total Knee Replacement

Abstract

Current 3D imaging modalities generate a wealth of diagnostic information, yet this information is underused in orthopaedics because of the lack of orthopaedic-specific imaging software. In this chapter, we detail how orthopaedic-specific imaging software can improve the diagnostic and planning capabilities of 3D imaging. Specifically, we describe the importance of biomechanical reference frames, as well as how to establish these reference frames using anatomical landmarks. Once these reference frames are established, this provides a basis for surgeon-specific views (i.e. views that the surgeon can directly compare to the operating room) as well as precise joint replacement component measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henckel J, Richards R, Lozhkin K, Harris S, Rodriguez y Baena FM, Barrett ARW, et al. Very low-dose computed tomography for planning and outcome measurement in knee replacement. The imperial knee protocol. J Bone Joint Surg Br. 2006;88(11):1513–8.

    Article  CAS  PubMed  Google Scholar 

  2. Arai N, Nakamura S, Matsushita T, Suzuki S. Minimal radiation dose computed tomography for measurement of cup orientation in total hip arthroplasty. J Arthroplasty. 2010;25(2):263–70.

    Article  PubMed  Google Scholar 

  3. OrthoExpert. OrthoImagingSolutions, Ltd; 2012.

    Google Scholar 

  4. Whiteside LA, Arima J. The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res. 1995;321:168.

    PubMed  Google Scholar 

  5. Middleton FR, Palmer SH. How accurate is Whiteside’s line as a reference axis in total knee arthroplasty? Knee. 2007;14(3):204–7.

    Article  PubMed  Google Scholar 

  6. Lenz NM, Mane A, Maletsky LP, Morton NA. The effects of femoral fixed body coordinate system definition on knee kinematic description. J Biomech Eng. 2008;130(2):021014.

    Article  PubMed  Google Scholar 

  7. Hepinstall MS, Ranawat AS. Landmarks for optimizing component position in total knee arthroplasty. Curr Orthop Pract. 2008;19(2):147.

    Article  Google Scholar 

  8. Berger R, Crossett L, Jacobs J, Rubash H. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res. 1998;356:144.

    Article  PubMed  Google Scholar 

  9. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res. 2001;392:46.

    Article  PubMed  Google Scholar 

  10. Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C. A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg. 2007;89(2):236.

    Article  PubMed  Google Scholar 

  11. Siston RA, Goodman SB, Patel JJ, Delp SL, Giori NJ. The high variability of tibial rotational alignment in total knee arthroplasty. Clin Orthop Relat Res. 2006;452:65.

    Article  PubMed  Google Scholar 

  12. Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y. Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop Relat Res. 2002;402:196.

    Article  PubMed  Google Scholar 

  13. Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med. 2008;38(3):177–98.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Dye SF. The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relat Res. 2005;436:100–10.

    Article  PubMed  Google Scholar 

  15. Luyckx T, Didden K, Vandenneucker H, Labey L, Innocenti B, Bellemans J. Is there a biomechanical explanation for anterior knee pain in patients with patella alta?: influence of patellar height on patellofemoral contact force, contact area and contact pressure. J Bone Joint Surg Br. 2009;91(3):344–50.

    Article  CAS  PubMed  Google Scholar 

  16. MacIntyre NJ, Hill NA, Fellows RA, Ellis RE, Wilson DR. Patellofemoral joint kinematics in individuals with and without patellofemoral pain syndrome. J Bone Joint Surg Am. 2006;88(12):2596–605.

    Article  CAS  PubMed  Google Scholar 

  17. Hirschmann MT, Iranpour F, Davda K, Rasch H, Hügli R, Friederich NF. Combined single-photon emission computerized tomography and conventional computerized tomography (SPECT/CT): clinical value for the knee surgeons? Knee Surg Sports Traumatol Arthrosc. 2010;18(3):341–5.

    Article  PubMed  Google Scholar 

  18. Petersson IF, Boegård T, Saxne T, Silman AJ, Svensson B. Radiographic osteoarthritis of the knee classified by the Ahlbäck and Kellgren & Lawrence systems for the tibiofemoral joint in people aged 35–54 years with chronic knee pain. Ann Rheum Dis. 1997;56(8):493–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hart AJ, Sabah S, Henckel J, Lewis A, Cobb J, Sampson B, et al. The painful metal-on-metal hip resurfacing. J Bone Joint Surg Br. 2009;91(6):738–44.

    Article  CAS  PubMed  Google Scholar 

  20. Dye SF, Chew MH. The use of scintigraphy to detect increased osseous metabolic activity about the knee. Instr Course Lect. 1994;43:453–69.

    CAS  PubMed  Google Scholar 

  21. Hirschmann MT, Wagner CR, Rasch H, Henckel J. Standardized volumetric 3D-analysis of SPECT/CT imaging in orthopaedics: overcoming the limitations of qualitative 2D analysis. BMC Med Imaging. 2012;12(1):5.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hirschmann MT, Iranpour F, Konala P, Kerner A, Rasch H, Cobb JP, et al. A novel standardized algorithm for evaluating patients with painful total knee arthroplasty using combined single photon emission tomography and conventional computerized tomography. Knee Surg Sports Traumatol Arthrosc. 2010;18(7):939–44.

    Article  PubMed  Google Scholar 

  23. Hirschmann MT, Mathis D, Afifi FK, Rasch H, Henckel J, Amsler F, et al. Single photon emission computerized tomography and conventional computerized tomography (SPECT/CT) for evaluation of patients after anterior cruciate ligament reconstruction: a novel standardized algorithm combining mechanical and metabolic information. Knee Surg Sports Traumatol Arthrosc. 2012;21(4):965–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Wagner PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wagner, C.R., Hirschmann, M.T., Beasley, R.A. (2015). 7 Specific Orthopaedic Imaging Analysis Software: Clinical Benefit for TKR Revision Surgeon. In: Hirschmann, M., Becker, R. (eds) The Unhappy Total Knee Replacement. Springer, Cham. https://doi.org/10.1007/978-3-319-08099-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08099-4_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08098-7

  • Online ISBN: 978-3-319-08099-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics