Skip to main content

23 Impingement After Total Knee Replacement

  • Chapter
The Unhappy Total Knee Replacement

Abstract

Impingement of total knee replacement (TKR) may cause chronic pain and may decrease the survival rate of the implants due to increased wear, osteolysis, and earlier onset of loosening, as well as fractures. Impingement of TKR can occur in every design; however, certain designs seem to be more likely to develop certain types of impingements. In general, three types of TKR impingement are distinguished: (1) soft tissue, (2) bony, and (3) implant-related impingement. Soft tissue impingement includes patellofemoral and anterior impingement. It develops mainly between scar or remnant soft tissue (e.g., meniscus remnants, posterior cruciate ligament, Hoffa fat pad, etc.) and the TKR implants. Bony impingement includes posterior femoral, patellofemoral, patellotibial, and fabella impingement. All three types of impingement can create clinical symptoms such as pain and decreased range of motion. In most cases, surgical therapy is the treatment of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carro LP, Suarez GG. Intercondylar notch fibrous nodule after total knee replacement. Arthroscopy. 1999;15(1):103–5.

    Article  CAS  PubMed  Google Scholar 

  2. Bonutti PM, Zywiel MG, Rudert LA, Gough AK, McGrath MS, Mont MA. Femoral notch stenosis caused by soft tissue impingement in semi or open-box posterior-stabilized total knee arthroplasty. J Arthroplasty. 2010;25(7):1061–5.

    Article  PubMed  Google Scholar 

  3. Banks SA, Harman MK, Hodge WA. Mechanism of anterior impingement damage in total knee arthroplasty. J Bone Joint Surg Am. 2002;84-A Suppl 2:37–42.

    PubMed  Google Scholar 

  4. Hirsh DM, Sallis JG. Pain after total knee arthroplasty caused by soft tissue impingement. J Bone Joint Surg Br. 1989;71(4):591–2.

    CAS  PubMed  Google Scholar 

  5. D’Angelo F, Marcolli D, Bulgheroni P, Murena L, Congiu T, Cherubino P. Two stage fracture of a polyethylene post in a 9-year-old posterior-stabilized knee prosthesis: a case report. J Med Case Rep. 2010;4:65.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Lee C-S, Chen W-M, Kou H-C, Lo W-H, Chen C-L. Early nontraumatic fracture of the polyethylene tibial post in a NexGen LPS-Flex posterior stabilized knee prosthesis. J Arthroplasty. 2009;24(8):1292.e5–9.

    Google Scholar 

  7. Nakamura I, Michishita K, Tanno M, Ito K. Synovial impingement after posterior cruciate-retaining total knee arthroplasty for rheumatoid arthritis. J Orthop Sci. 2006;11(3):303–7.

    Article  PubMed  Google Scholar 

  8. Saouti R, van Royen BJ, Fortanier CM. An impinging remnant meniscus causing early polyethylene failure in total knee arthroplasty: a case report. J Med Case Reports. 2007;1(1):48.

    Article  PubMed Central  Google Scholar 

  9. Diduch DR, Scuderi GR, Scott WN, Insall JN, Kelly MA. The efficacy of arthroscopy following total knee replacement. Arthroscopy. 1997;13(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  10. Kramers-de Quervain IA, Engel-Bicik I, Miehlke W, Drobny T, Munzinger U. Fat-pad impingement after total knee arthroplasty with the LCS A/p-glide system. Knee Surg Sports Traumatol Arthrosc. 2005;13(3):174–8.

    Article  PubMed  Google Scholar 

  11. Mizu-Uchi H, Colwell CW, Fukagawa S, Matsuda S, Iwamoto Y, D Lima DD. The importance of bony impingement in restricting flexion after total knee arthroplasty: computer simulation model with clinical correlation. J Arthroplasty. 2012;27(9):1710–6.

    Article  PubMed  Google Scholar 

  12. Yau WP, Chiu KY, Tang WM, Ng TP. Residual posterior femoral condyle osteophyte affects the flexion range after total knee replacement. Int Orthop. 2005;29(6):375–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Goldstein WM, Raab DJ, Gleason TF, Branson JJ, Berland K. Why posterior cruciate-retaining and substituting total knee replacements have similar ranges of motion. The importance of posterior condylar offset and cleanout of posterior condylar space. J Bone Joint Surg Am. 2006;88 Suppl 4:182–8.

    Article  PubMed  Google Scholar 

  14. Majewski M, Weining G, Friederich NF. Posterior femoral impingement causing polyethylene failure in total knee arthroplasty. J Arthroplasty. 2002;17(4):524–5216.

    Article  PubMed  Google Scholar 

  15. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br. 2002;84(1):50–3.

    Article  CAS  PubMed  Google Scholar 

  16. Banks SA, Markovich GD, Hodge WA. In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty. 1997;12(3):297–304.

    Article  CAS  PubMed  Google Scholar 

  17. Dennis DA, Komistek RD, Colwell CE, Ranawat CS, Scott RD, Thornhill TS, Lapp MA. In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res. 1998;356:47–57.

    Article  PubMed  Google Scholar 

  18. Stiehl JB, Komistek RD, Dennis DA. Detrimental kinematics of a flat on flat total condylar knee arthroplasty. Clin Orthop Relat Res. 1999;365:139–48.

    Article  PubMed  Google Scholar 

  19. Stiehl JB, Dennis DA, Komistek RD, Keblish PA. In vivo kinematic comparison of posterior cruciate ligament retention or sacrifice with a mobile bearing total knee arthroplasty. Am J Knee Surg. 2000;13(1):13–8.

    CAS  PubMed  Google Scholar 

  20. Uvehammer J, Kärrholm J, Brandsson S, Herberts P, Carlsson L, Karlsson J, Regnér L. In vivo kinematics of total knee arthroplasty: flat compared with concave tibial joint surface. J Orthop Res. 2000;18(6):856–64.

    Article  CAS  PubMed  Google Scholar 

  21. Arabori M, Matsui N, Kuroda R, Mizuno K, Doita M, Kurosaka M, Yoshiya S. Posterior condylar offset and flexion in posterior cruciate-retaining and posterior stabilized TKA. J Orthop Sci. 2008;13(1):46–50.

    Article  PubMed  Google Scholar 

  22. Yoshiya S, Matsui N, Komistek RD, Dennis DA, Mahfouz M, Kurosaka M. In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty. 2005;20(6):777–83.

    Article  PubMed  Google Scholar 

  23. Ng FY, Wong HL, Yau WP, Chiu KY, Tang WM. Comparison of range of motion after standard and high-flexion posterior stabilised total knee replacement. Int Orthop. 2008;32(6):795–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Baldini A, Anderson JA, Cerulli-Mariani P, Kalyvas J, Pavlov H, Sculco TP. Patellofemoral evaluation after total knee arthroplasty. Validation of a new weight-bearing axial radiographic view. J Bone Joint Surg Am. 2007;89(8):1810–7.

    Article  PubMed  Google Scholar 

  25. Sensi L, Buzzi R, Giron F, De Luca L, Aglietti P. Patellofemoral function after total knee arthroplasty: gender-related differences. J Arthroplasty. 2011;26(8):1475–80.

    Article  PubMed  Google Scholar 

  26. Doerr TE, Eckhoff DG. Lateral patellar burnishing in total knee arthroplasty following medialization of the patellar button. J Arthroplasty. 1995;10(4):540–2.

    Article  CAS  PubMed  Google Scholar 

  27. Aglietti P, Buzzi R, Gaudenzi A. Patellofemoral functional results and complications with the posterior stabilized total condylar knee prosthesis. J Arthroplasty. 1988;3(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  28. Melloni P, Valls R, Veintemillas M. Imaging patellar complications after knee arthroplasty. Eur J Radiol. 2008;65(3):478–82.

    Article  PubMed  Google Scholar 

  29. Cercek R, Jacofsky D, Kieffer K, Larsen B, Jacofsky M. Lateral patellofemoral impingement: a cause of treatable pain after TKA. J Knee Surg. 2011;24(3):181–4.

    Article  PubMed  Google Scholar 

  30. Lonner JH. Lateral patellar chamfer in total knee arthroplasty. Am J Orthop (Belle Mead NJ). 2001;30(9):713–4.

    CAS  Google Scholar 

  31. Argenson J-NA, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac J-M. In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech. 2005;38(2):277–84.

    Article  PubMed  Google Scholar 

  32. Bellemans J. Restoring the joint line in revision TKA: does it matter? Knee. 2004;11(1):3–5.

    Article  CAS  PubMed  Google Scholar 

  33. Grigoris PH, Treacy RB, McMinn DJ. Patellotibial impingement in kinemax stabilised total knee replacement. J Bone Joint Surg Br. 1992;74(3):472–3.

    CAS  PubMed  Google Scholar 

  34. Maeno S, Kondo M, Niki Y, Matsumoto H. Patellar impingement against the tibial component after total knee arthroplasty. Clin Orthop Relat Res. 2006;452:265–9.

    Google Scholar 

  35. Chonko DJ, Lombardi AV, Berend KR. Patella baja and total knee arthroplasty (TKA): etiology, diagnosis, and management. Surg Technol Int. 2004;12:231–8.

    PubMed  Google Scholar 

  36. Larson JE, Becker DA. Fabellar impingement in total knee arthroplasty. A case report. J Arthroplasty. 1993;8(1):95–7.

    Article  CAS  PubMed  Google Scholar 

  37. Jaffe FF, Kuschner S, Klein M. Fabellar impingement: a cause of pain after total knee replacement. A case report. J Bone Joint Surg Am. 1988;70(4):613–6.

    CAS  PubMed  Google Scholar 

  38. Wang JW. Fabellar impingement after total knee replacement–a case report. Changgeng Yi Xue Za Zhi. 1995;18(2):185–9.

    CAS  PubMed  Google Scholar 

  39. Otani T, Fujii K, Ozawa M, Kaechi K, Funaki K, Matsuba T, Ueno H. Impingement after total knee arthroplasty caused by cement extrusion and proximal tibiofibular instability. J Arthroplasty. 1998;13(5):589–91.

    Article  CAS  PubMed  Google Scholar 

  40. Nakayama K, Matsuda S, Miura H, Iwamoto Y, Higaki H, Otsuka K. Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty. J Bone Joint Surg Br. 2005;87(4):483–8.

    Article  CAS  PubMed  Google Scholar 

  41. Chiu Y-S, Chen W-M, Huang C-K, Chiang C-C, Chen T-H. Fracture of the polyethylene tibial post in a NexGen posterior-stabilized knee prosthesis. J Arthroplasty. 2004;19(8):1045–9.

    Article  PubMed  Google Scholar 

  42. Lim HC, Bae JH, Hwang JH, Kim SJ, Yoon JY. Fracture of a polyethylene tibial post in a scorpio posterior-stabilized knee prosthesis. Clin Orthop Surg. 2009;1(2):118–21.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Clarke HD, Math KR, Scuderi GR. Polyethylene post failure in posterior stabilized total knee arthroplasty. J Arthroplasty. 2004;19(5):652–7.

    Article  PubMed  Google Scholar 

  44. Hendel D, Garti A, Weisbort M. Fracture of the central polyethylene tibial spine in posterior stabilized total knee arthroplasty. J Arthroplasty. 2003;18(5):672–4.

    Article  PubMed  Google Scholar 

  45. Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB. Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. J Bone Joint Surg Am. 2001;83-A(3):390–7.

    CAS  PubMed  Google Scholar 

  46. Dolan MM, Kelly NH, Nguyen JT, Wright TM, Haas SB. Implant design influences tibial post wear damage in posterior-stabilized knees. Clin Orthop Relat Res. 2011;469(1):160–7.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Huang C-H, Liau J-J, Huang C-H, Cheng C-K.Influence of post-cam design on stresses on posterior-stabilized tibial posts. Clin Orthop Relat Res. 2006;450(450):150–6.

    Article  PubMed  Google Scholar 

  48. Huang C-H, Liau J-J, Huang C-H, Cheng C-K. Stress analysis of the anterior tibial post in posterior stabilized knee prostheses. J Orthop Res. 2007;25(4):442–9.

    Article  PubMed  Google Scholar 

  49. Lin K-J, Huang C-H, Liu Y-L, Chen W-C, Chang T-W, Yang C-T, et al. Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion. Clin Biomech (Bristol, Avon). 2011;26(8):847–52.

    Article  Google Scholar 

  50. Callaghan JJ, O’Rourke MR, Goetz DD, Schmalzried TP, Campbell PA, Johnston RC. Tibial post impingement in posterior-stabilized total knee arthroplasty. Clin Orthop Relat Res. 2002;404:83–8.

    Article  PubMed  Google Scholar 

  51. Hamai S, Miura H, Higaki H, Shimoto T, Matsuda S, Iwamoto Y. Evaluation of impingement of the anterior tibial post during gait in a posteriorly-stabilised total knee replacement. J Bone Joint Surg Br. 2008;90(9):1180–5.

    Article  CAS  PubMed  Google Scholar 

  52. Harman MK, Banks SA, Hodge WA. Polyethylene damage and knee kinematics after total knee arthroplasty. Clin Orthop Relat Res. 2001;392:383–93.

    Article  PubMed  Google Scholar 

  53. Furman B, Gillis A, Schmieg J, Bhattacharyya S, Li S. Wear and damage to the post in posterior stabilized total knee replacements: an unexpected source of polyethylene debris. Trans Soc Biomater. 1999;22:478.

    Google Scholar 

  54. Li G, Papannagari R, Most E, Park SE, Johnson T, Tanamal L, Rubash HE. Anterior tibial post impingement in a posterior stabilized total knee arthroplasty. J Orthop Res. 2005;23(3):536–41.

    Article  PubMed  Google Scholar 

  55. Hanson GR, Suggs JF, Kwon Y-M, Freiberg AA, Li G. In vivo anterior tibial post contact after posterior stabilizing total knee arthroplasty. J Orthop Res. 2007;25(11):1447–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kopf MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kopf, S., Stärke, C., Becker, R. (2015). 23 Impingement After Total Knee Replacement. In: Hirschmann, M., Becker, R. (eds) The Unhappy Total Knee Replacement. Springer, Cham. https://doi.org/10.1007/978-3-319-08099-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08099-4_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08098-7

  • Online ISBN: 978-3-319-08099-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics