Prediction of Switching Times of Traffic Actuated Signal Controls Using Support Vector Machines

  • Toni WeisheitEmail author
  • Robert Hoyer
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)


At signalized intersections there is a significant saving potential of emissions by an energy-efficient and fuel-optimized approach to the stop line. For this purpose, various assistance systems have already been developed. Among other things these systems provide the driver with speed recommendations to cross the next traffic light without stopping. However, accurate information about forthcoming traffic signal switching times is required. Modern traffic signal systems adapt their switching times depending on the current traffic flow. So a predicted phase transition will only occur with a smaller probability than 100%. The paper identifies specific challenges by developing an algorithm for a prediction of traffic actuated signal controls and it presents its mathematical foundations and the results of the prediction.


Prediction Switching Times Traffic actuated Signal Controller Support Vector Machines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Otto, T.: Kooperative Verkehrsbeeinflussung und Verkehrssteuerung an signalisierten Knotenpunkten, Schriftenreihe Verkehr der Universität Kassel Heft 21, Kassel (2011)Google Scholar
  2. 2.
    Menig, C., et al.: Der informierte Fahrer - Optimierung des Verkehrsablaufs durch LSA-Fahrzeug-Kommunikation, Heureka 2008, Stuttgart (2008)Google Scholar
  3. 3.
    Krumnow, M.: Schaltzeitprognose verkehrsadaptiver Lichtsignalanlagenim Rahmen des Forschungsprojektes EFA 2014/2, 8. Tagung verkehrliche Informationspattform für Management- und Optimierungssysteme, Dresden (2012)Google Scholar
  4. 4.
    Hoyer, R., et al.: Modelling of vehicle actuated traffic lights. In: Schulze, T., et al. (eds.) Simulation und Visualisierung 2004, Society for Modeling and Simulation International SCS, pp. 359–369. European Publishing House, Erlangen (2004)Google Scholar
  5. 5.
    Koukoumidis, E., et al.: Leveraging Smartphone Cameras for Collaborative Road Advisories. IEEE Transactions on Mobile Computing 11(5), 707–723 (2012)CrossRefGoogle Scholar
  6. 6.
    Schölkopf, B.: Support Vector Machines – a practical consequence of learning theory. IEEE Intelligent Systems 13(4), 18–21 (1998)CrossRefGoogle Scholar
  7. 7.
    Meyer, D., et al.: Support Vector Machines in R. Journal of Statistical Software 15(9) (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Traffic Engineering and Transport LogisticsUniversity of KasselKasselGermany

Personalised recommendations