Context-Based Service Fusion for Personalized On-Board Information Support

  • Alexander SmirnovEmail author
  • Nikolay Shilov
  • Aziz Makklya
  • Oleg Gusikhin
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)


Current in-vehicle information systems make it possible to benefit from integration of new ideas to provide richer driving experience. The paper presents a concept, main supporting technologies and an illustrative case study for improved on-board information system. The key idea of the proposed approach is to implement context-based service fusion supported by a negotiation model. This would provide a new, previously unavailable level of personalized on-board information support via finding compromise decisions taking into account proposals of various services and driver preferences.


personalized on-board information support context service fusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambrosino, G., Boero, M., Nelson, J.D., Romanazzo, M. (eds.): Infomobility Systems and Sustainable Transport Services, 336 p. ENEA Italian National Agency For New Technologies, Energy And Sustainable Economic Development (2012)Google Scholar
  2. 2.
    Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. Context-Aware Computing, A Special Triple Issue of Human-Computer Interaction 16, 229–241 (2001)Google Scholar
  3. 3.
    Raz, D., Juhola, A.T., Serrat-Fernandez, J., Galis, A.: Fast and Efficient Context-Aware Services. John Willey & Sons, Ltd. (2006)Google Scholar
  4. 4.
    Smirnov, A., Levashova, T., Shilov, N.: Patterns for Context-Based Knowledge Fusion in Decision Support. Information Fusion (in press),
  5. 5.
    Smirnov, A., Sandkuhl, K., Shilov, N.: Multilevel Self-Organisation of Cyber-Physical Networks: Synergic Approach. International Journal of Integrated Supply Management 8(1/2/3), 90–106 (2013)CrossRefGoogle Scholar
  6. 6.
    Choi, Y.T., Dooley, K.J., Rungtusanatham, M.: Supply Networks and Complex Adaptive Systems: Control versus Emergence. Journal of Operations Management 19, 351–366 (2001)CrossRefGoogle Scholar
  7. 7.
    Telenor R&D, Report, Project No TFPFAN, Program Peer-To-Peer Computing (2003),
  8. 8.
    De Mola, F., Quitadamo, R.: Towards an Agent Model for Future Autonomic Communications. In: Proceedings of the 7th WOA 2006 Workshop From Objects to Agents (2006),
  9. 9.
    Scherl, R., Ulery, D.L.: Technologies for Army Knowledge Fusion. Final report, Monmouth University, Computer Science Department, West Long Branch; Report No. ARL-TR-3279 (2004)Google Scholar
  10. 10.
    Alun, P., Hui, K., Gray, A., Marti, P., Bench-Capon, T., Cui, Z., Jones, D.: Kraft: an Agent Architecture for Knowledge Fusion. International Journal for Cooperative Information Systems 10(1-2), 171–195 (2001)Google Scholar
  11. 11.
    Roemer, M.J., Kacprzynski, G.J., Orsagh, R.F.: Assessment of Data and Knowledge Fusion Strategies for Prognostics and Health Management. In: Proceedings of 2001 IEEE Aerospace Conference, vol. 6, pp. 2979–2988 (2001)Google Scholar
  12. 12.
    Laskey, K.B., Costa, P., Janssen, T.: Probabilistic Ontologies for Knowledge Fusion. In: Proceedings of 2008 IEEE 11th International Conference on Information Fusion (2008),
  13. 13.
    Jonquet, C., LePendu, P., Falconer, S., Coulet, A., Noy, N.F., Musen, M.A., Shah, N.H.: NCBO Resource Index: Ontology-Based Search and Mining of Biomedical Resources. Journal of Web Semantics 9(3), 316–324 (2011)CrossRefGoogle Scholar
  14. 14.
    Lin, L.Y., Lo, Y.J.: Knowledge creation and Cooperation between Cross-Nation R&D Institutes. International Journal of Electronic Business Management 8(1), 9–19 (2010)Google Scholar
  15. 15.
    Smirnov, A., Pashkin, M., Chilov, N., Levashova, T., Haritatos, F.: Knowledge Source Network Configuration Approach to Knowledge Logistics. International Journal of General Systems 32(3), 251–269 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sandkuhl, K., Smirnov, A., Shilov, N.: Configuration of Automotive Collaborative Engineering and Flexible Supply Networks. In: Cunningham, Cunningham (eds.) Expanding the Knowledge Economy – Issues, Applications, Case Studies, pp. 929–936. IOS Press, Amsterdam (2007)Google Scholar
  17. 17.
    Smirnov, A., Shilov, N., Kashevnik, A.: Developing a Knowledge Management Platform for Automotive Build-To-Order Production Network. Human Systems Management 27(31), 15–30 (2008)Google Scholar
  18. 18.
    Heflin, J., Hendler, J.: Semantic Interoperability on the Web. In: Proceedings of Extreme Markup Languages, pp. 111–120. Graphic Communications Association (2000)Google Scholar
  19. 19.
    Franklin, S.: Is It an Agent, or Just a Program?: A Taxonomy for Autonomous Agents. In: Jennings, N.R., Wooldridge, M.J., Müller, J.P. (eds.) ECAI-WS 1996 and ATAL 1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Klampfl, E., Gusikhin, O., Theisen, K., Liu, Y., Giuli, T.J.: Intelligent Refueling Advisory System. In: Proceedings of 2nd Workshop on Intelligent Vehicle Control Systems, Madeira, Portugal, pp. 60–72 (2008)Google Scholar
  21. 21.
    Burke, R., Ramezani, M.: Matching Recommendation Technologies and Domains. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook. Springer (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander Smirnov
    • 1
    • 3
    Email author
  • Nikolay Shilov
    • 1
  • Aziz Makklya
    • 2
  • Oleg Gusikhin
    • 2
  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)St. PetersburgRussia
  2. 2.Ford Motor CompanyDearbornUSA
  3. 3.University ITMOSt. PetersburgRussia

Personalised recommendations