Advertisement

Evolution in Advanced Driver Assistance: From Steering Support in Highway Construction Zones to Assistance in Urban Narrow Road Scenarios

  • Thomas Paul MichalkeEmail author
  • Thomas Gußner
  • Lutz Bürkle
  • Frank Niewels
Conference paper
  • 2k Downloads
Part of the Lecture Notes in Mobility book series (LNMOB)

Abstract

With the advances in environment sensor technology, advanced driver assistance systems (ADAS) that target increasingly complex scenarios such as inner-city traffic get into focus. Such novel ADAS will offer assistance in a wide range of urban traffic scenarios and, thus, will further decrease the number and severity of accidents. In this contribution, the evolution of an ADAS for lateral guidance in highway construction zones (i.e. the “construction zone assistant”) towards assistance in narrow urban road scenarios (i.e. the “urban narrow road assistant”) is presented. The focus of the contribution will be on the challenges of these two scenario types and their respective requirements on the system concept and design. While steering support in highway construction zones will be available on the market soon, its functional extension to inner-city traffic is still characterized by numerous technological challenges. Due to that, the emphasis in terms of algorithmic details will be on the “urban narrow road assistant”.

Keywords

Construction zones UR:BAN automated steering support driver assistance in inner-city automated lateral control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardelt, M., Coester, C., Kaempchen, N.: Highly automated driving on freeways in real traffic using a probabilistic framework. IEEE Transactions on Intelligent Transportation Systems 13, 1576–1585 (2012)CrossRefGoogle Scholar
  2. 2.
    Dolgov, D., Thrun, S.: Autonomous driving in semi-structured environments: Mapping and planning. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3407–3414 (2009)Google Scholar
  3. 3.
    Dang, T., Kammel, S., Duchow, C., Hummel, B., Stiller, C.: Path planning for autonomous driving based on stereoscopic and monoscopic vision cues. In: 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 191–196 (2006)Google Scholar
  4. 4.
    Gasser, M.: Rechtsfolgen zunehmender Fahrzeugautomatisierung. Bundesanstalt für Straßenwesen (2012)Google Scholar
  5. 5.
    Gayko, J.: Lane Departure Warning. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme, pp. 543–553 (2009)Google Scholar
  6. 6.
    Rohlfs, M., et al.: Gemeinschaftliche Entwicklung des Volkswagen Lane Assist. In: VDI-Berichte, vol. 2048, pp. 15–33 (2008)Google Scholar
  7. 7.
    Gayko, J.: Lane Keeping Support. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme, pp. 554–561 (2009)Google Scholar
  8. 8.
    AKTIV: Adaptive und kooperative Technologien für den intelligenten Verkehr (2010), http://www.aktiv-online.org
  9. 9.
  10. 10.
    V-Charge: Autonomous Valet Parking and Charging for e-Mobility (2011), http://www.v-charge.eu/?page_id=28, www.v-charge.eu
  11. 11.
    Furgale, P.: Toward autonomous driving in cities using closeto-market surround sensors an overview of the v-charge project. In: IEEE Intell. Veh. Symp., Gold Coast, Australia (2013)Google Scholar
  12. 12.
    Hirschmüller, H.: Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 807–814 (2005)Google Scholar
  13. 13.
    Mallot, H.: Computational vision: Information processing in perception and visual behavior. MIT Press Robotica (2002)Google Scholar
  14. 14.
    Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proc. IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 116–121 (1985)Google Scholar
  15. 15.
    Michalke, T., Gläser, C., Bürkle, L., Niewels, F.: The Narrow Road Assistant - Next Generation Advanced Driver Assistance in Inner-City. In: Proceedings of the IEEE International Conference on Intelligent Transport Systems (2013)Google Scholar
  16. 16.
    Gläser, C., Michalke, T., Bürkle, L., Niewels, F.: Environment Perception for Inner-City Driver Assistance and Highly-Automated Driving. In: Proceedings of the IEEE Intelligent Vehicles Symposium (2014)Google Scholar
  17. 17.
    Urbaner Raum: Benutzergerechte Assistenzsysteme und Netzmanagement (UR:BAN) (2012), http://urban-online.org/de/urban.html, www.urban-online.org

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Paul Michalke
    • 1
    Email author
  • Thomas Gußner
    • 1
  • Lutz Bürkle
    • 1
  • Frank Niewels
    • 1
  1. 1.Corporate Research (CR/AEV2)Robert Bosch GmbHStuttgartGermany

Personalised recommendations