Skip to main content

Microbubbles as Theranostics Agents

  • Chapter
  • First Online:
Nano-Oncologicals

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 1319 Accesses

Abstract

Clinically, ultrasound (US) has been used as a cheap, quick, and effective form of imaging that provides information useful for diagnostic purposes. With the advent of microbubbles as US contrast agents, this simple imaging technique has evolved into a tool capable of providing molecularly targeted visualization of disease and controlled delivery of therapeutics. The simple, yet robust, structure of the microbubble allows for both internal and external modifications, which lead to a wide variety of clinical uses. This chapter will introduce the reader to microbubble fabrication, stabilization, drug loading, and targeting. The reader will also be briefly exposed to specific examples of current work done using microbubbles in areas of cancer treatment and protein/gene therapies. The work reviewed here is only a small fraction of the literature available on the subject matter and serves as an introduction to microbubbles as contrast agents, drug delivery vehicles, and theranostic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arvanitis CD et al (2011) Cavitation-enhanced extravasation for drug delivery. Ultrasound Med Biol 37(11):1838–1852

    Article  PubMed  Google Scholar 

  • Bekeredjian R et al (2005) Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. Ultrasound Med Biol 31(5):687–691

    Article  PubMed  Google Scholar 

  • Bekeredjian R et al (2007) Ultrasound-targeted microbubble destruction augments proteins delivery into testes. Urology 69(2):386–389

    Article  PubMed  Google Scholar 

  • Bioley G et al (2012) Gas-filled microbubble-mediated delivery of antigen and the induction of immune responses. Biomaterials 33(25):5935–5946

    Article  PubMed  CAS  Google Scholar 

  • Blomley MJ et al (2001) Microbubble contrast agents: a new era in ultrasound. BMJ 322(7296):1222–1225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Borden MA et al (2007) DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir 23(18):9401–9408

    Article  PubMed  CAS  Google Scholar 

  • Borden MA et al (2008) A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 29(5):597–606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carson AR et al (2011) Gene therapy of carcinoma using ultrasound-targeted microbubble destruction. Ultrasound Med Biol 37(3):393–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Carson AR et al (2012) Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Res 72(23):6191–6199

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Castle J et al (2013) Ultrasound-mediated targeted drug delivery: recent success and remaining challenges. Am J Physiol Heart Circ Physiol 304(3):H350–H357

    Article  PubMed  CAS  Google Scholar 

  • Castro-Hernandez E et al (2011) Microbubble generation in a co-flow device operated in a new regime. Lab Chip 11(12):2023–2029

    Article  PubMed  CAS  Google Scholar 

  • Chen SY et al (2006) Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci U S A 103(22):8469–8474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cochran MC et al (2011) Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm 414(1–2):161–170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cosgrove D (2004) The advances are significant improvements in both the microbubbles used as contrast agents and in the software that allows their selective detection. Eur Radiol 14(Suppl 8): P1–P3

    Google Scholar 

  • Cosgrove D (2006) Ultrasound contrast agents: an overview. Eur J Radiol 60(3):324–330

    Article  PubMed  Google Scholar 

  • Cui W et al (2005) Preparation and evaluation of poly(l-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography. J Biomed Mater Res B Appl Biomater 73(1):171–178

    Article  PubMed  Google Scholar 

  • Culp WC et al (2003) Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts in dogs. J Vasc Interv Radiol 14(3):343–347

    Article  PubMed  Google Scholar 

  • Deshpande N, Needles A, Willmann JK (2010) Molecular ultrasound imaging: current status and future directions. Clin Radiol 65(7):567–581

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dove JD, Murray TW, Borden MA (2013) Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles. Soft Matter 9(32):7743–7750

    Article  CAS  Google Scholar 

  • Duncanson WJ et al (2010) Targeted binding of PEG-lipid modified polymer ultrasound contrast agents with tiered surface architecture. Biotechnol Bioeng 106(3):501–506

    PubMed  CAS  PubMed Central  Google Scholar 

  • El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Fabiilli ML et al (2010) Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharm Res 27(12):2753–2765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fang JY et al (2007) A study of the formulation design of acoustically active lipospheres as carriers for drug delivery. Eur J Pharm Biopharm 67(1):67–75

    Article  PubMed  CAS  Google Scholar 

  • Feril LB et al (2006) Optimized ultrasound-mediated gene transfection in cancer cells. Cancer Sci 97(10):1111–1114

    Article  PubMed  CAS  Google Scholar 

  • Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

    Article  PubMed  CAS  Google Scholar 

  • Ganan-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(27 Pt 1):274501

    Article  PubMed  CAS  Google Scholar 

  • Geers B et al (2011) Self-assembled liposome-loaded microbubbles: the missing link for safe and efficient ultrasound triggered drug-delivery. J Control Release 152(2):249–256

    Article  PubMed  CAS  Google Scholar 

  • Gunduz O et al (2012) Bioinspired bubble design for particle generation. J R Soc Interface 9(67):389–395

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hallow DM et al (2006) Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med Biol 32(7):1111–1122

    Article  PubMed  Google Scholar 

  • Harvey CJ et al (2001) Developments in ultrasound contrast media. Eur Radiol 11(4):675–689

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M et al (2008) Formation of bubbles and droplets in parallel, coupled flow-focusing geometries. Small 4(10):1795–1805

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger G et al (1997) Interstitial pH and pO(2) gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3(2):177–182

    Article  PubMed  CAS  Google Scholar 

  • Hettiarachchi K et al (2007) On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab Chip 7(4):463–468

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hettiarachchi K et al (2009) Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy. Biotechnol Prog 25(4):938–945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huber PE, Pfisterer P (2000) In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther 7(17):1516–1525

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K et al (2001) Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology 220(3):640–646

    Article  PubMed  CAS  Google Scholar 

  • Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62(11):1052–1063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kang J et al (2010) Antitumor effect of docetaxel-loaded lipid microbubbles combined with ultrasound-targeted microbubble activation on VX2 rabbit liver tumors. J Ultrasound Med 29(1):61–70

    PubMed  Google Scholar 

  • Kendall MR et al (2012) Scaled-up production of monodisperse, dual layer microbubbles using multi-array microfluidic module for medical imaging and drug delivery. Bubble Sci Eng Technol 4(1):12–20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kiessling F, Huppert J, Palmowski M (2009) Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem 16(5):627–642

    Article  PubMed  CAS  Google Scholar 

  • Kiessling F et al (2012) Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 53(3):345–348

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Klibanov AL, Needham D (2000) The influence of tiered layers of surface-grafted poly(ethylene glycol) on receptor-ligand-mediated adhesion between phospholipid monolayer-stabilized microbubbles and coated class beads. Langmuir 16(6):2808–2817

    Article  CAS  Google Scholar 

  • Kinoshita M, Hynynen K (2005) A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochem Biophys Res Commun 335(2): 393–399

    Article  PubMed  CAS  Google Scholar 

  • Klibanov AL (1999) Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliv Rev 37(1–3):139–157

    Article  PubMed  CAS  Google Scholar 

  • Kwan JJ, Borden MA (2010) Microbubble dissolution in a multigas environment. Langmuir 26(9):6542–6548

    Article  PubMed  CAS  Google Scholar 

  • Kwan JJ, Borden MA (2012) Lipid monolayer collapse and microbubble stability. Adv Colloid Interface Sci 183:82–99

    Article  PubMed  Google Scholar 

  • Laurent S et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Lee D (2010) Elastic instability of polymer-shelled bubbles formed from air-in-oil-in-water compound bubbles. Soft Matter 6(18):4326–4330

    Article  CAS  Google Scholar 

  • Lee H et al (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128(22):7383–7389

    Article  PubMed  CAS  Google Scholar 

  • Lentacker I et al (2006) Microbubbles which bind and protect DNA against nucleases. J Control Release 116(2):E73–E75

    Article  PubMed  CAS  Google Scholar 

  • Lentacker I et al (2007) Lipoplex-loaded microbubbles for gene delivery: a Trojan horse controlled by ultrasound. Adv Funct Mate 17(12):1910–1916

    Google Scholar 

  • Lentacker I et al (2010) Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol Ther 18(1):101–108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leong-Poi H et al (2007) Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res 101(3):295–303

    Article  PubMed  CAS  Google Scholar 

  • Li YS et al (2009) Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: potential applications for gene therapy of cancer. Cancer Lett 273(1):62–69

    Article  PubMed  CAS  Google Scholar 

  • Lin CY et al (2012) Enhancement of focused ultrasound with microbubbles on the treatments of anticancer nanodrug in mouse tumors. Nanomedicine 8(6):900–907

    Article  PubMed  CAS  Google Scholar 

  • Liu Z et al (2011) Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32(26):6155–6163

    PubMed  CAS  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Google Scholar 

  • Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  PubMed  CAS  Google Scholar 

  • Martinez J et al (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574

    Article  PubMed  CAS  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580

    Article  PubMed  CAS  Google Scholar 

  • Mesiwala AH, Mourad PD (2002) Monitoring of biologic effects of focused ultrasound beams on the brain. Radiology 224(1):294–296, author reply 296–7

    Article  PubMed  Google Scholar 

  • Mesiwala AH et al (2002) High-intensity focused ultrasound selectively disrupts the blood–brain barrier in vivo. Ultrasound Med Biol 28(3):389–400

    Article  PubMed  Google Scholar 

  • Miller DL, Pislaru SV, Greenleaf JE (2002) Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 27(1–6):115–134

    Article  PubMed  CAS  Google Scholar 

  • Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9(24):1647–1652

    Article  PubMed  CAS  Google Scholar 

  • Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293

    Article  PubMed  CAS  Google Scholar 

  • Panje CM et al (2012) Ultrasound-mediated gene delivery with cationic versus neutral microbubbles: effect of DNA and microbubble dose on in vivo transfection efficiency. Theranostics 2(11):1078–1091

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paradossi G et al (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med 14(8):687–691

    Article  PubMed  CAS  Google Scholar 

  • Parhizkar M, Edirisinghe M, Stride E (2013) Effect of operating conditions and liquid physical properties on the size of monodisperse microbubbles produced in a capillary embedded T-junction device. Microfluid Nanofluidics 14(5):797–808

    Article  CAS  Google Scholar 

  • Park Y et al (2012) Tunable diacetylene polymerized shell microbubbles as ultrasound contrast agents. Langmuir 28(8):3766–3772

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Phillips P, Gardner E (2004) Contrast-agent detection and quantification. Eur Radiol 14(Suppl 8): P4–P10

    Google Scholar 

  • Pochon S et al (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45(2):89–95

    Article  PubMed  CAS  Google Scholar 

  • Porter TR, Xie F (2001) Ultrasound, microbubbles, and thrombolysis. Prog Cardiovasc Dis 44(2):101–110

    Article  PubMed  CAS  Google Scholar 

  • Porter TR et al (1996) Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles. Am Heart J 132(5):964–968

    Article  PubMed  CAS  Google Scholar 

  • Pramanik M et al (2008) Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography. Med Phys 35(6):2218–2223

    Article  PubMed  PubMed Central  Google Scholar 

  • Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99(14):1095–1106

    Article  PubMed  CAS  Google Scholar 

  • Romanowsky MB et al (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12(4):802–807

    Article  PubMed  CAS  Google Scholar 

  • Roth JA, Cristiano RJ (1997) Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 89(1):21–39

    Article  PubMed  CAS  Google Scholar 

  • Sarkar K, Katiyar A, Jain P (2009) Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability. Ultrasound Med Biol 35(8):1385–1396

    Article  PubMed  PubMed Central  Google Scholar 

  • Sciallero C, Trucco A (2013) Ultrasound assessment of polymer-shelled magnetic microbubbles used as dual contrast agents. J Acoust Soc Am 133(6):El478–El484

    Google Scholar 

  • Sever AR et al (2012) Sentinel node identification using microbubbles and contrast-enhanced ultrasonography. Clin Radiol 67(7):687–694

    Article  PubMed  CAS  Google Scholar 

  • Sheikov N et al (2004) Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30(7):979–989

    Article  PubMed  Google Scholar 

  • Sheikov N et al (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34(7):1093–1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Shortencarier MJ et al (2004) A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE Trans Ultrason Ferroelectr Freq Control 51(7):822–831

    Article  PubMed  Google Scholar 

  • Stride E, Saffari N (2003) Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng H 217(6):429–447

    Article  PubMed  CAS  Google Scholar 

  • Talu E et al (2007) Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging. Mol Imaging 6(6):384–392

    PubMed  PubMed Central  Google Scholar 

  • Tardy I et al (2010) Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55. Invest Radiol 45(10):573–578

    Article  PubMed  CAS  Google Scholar 

  • Tinkov S et al (2010a) New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization. J Control Release 148(3):368–372

    Article  PubMed  CAS  Google Scholar 

  • Tinkov S et al (2010b) New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I – Formulation development and in-vitro characterization. J Control Release 143(1):143–150

    Article  PubMed  CAS  Google Scholar 

  • Treat LH et al (2012) Improved anti-tumor effect of liposomal doxorubicin after targeted blood–brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol 38(10):1716–1725

    Article  PubMed  PubMed Central  Google Scholar 

  • Unger EC et al (1998) Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33(12):886–892

    Article  PubMed  CAS  Google Scholar 

  • Unger EC et al (2001) Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 44(1):45–54

    Article  PubMed  CAS  Google Scholar 

  • Unger EC et al (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 56(9):1291–1314

    Article  PubMed  CAS  Google Scholar 

  • Urban-Klein B et al (2005) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 12(5):461–466

    Article  PubMed  CAS  Google Scholar 

  • Villa R et al (2013) Targeted doxorubicin delivery by chitosan-galactosylated modified polymer microbubbles to hepatocarcinoma cells. Colloids Surf B Biointerfaces 110:434–442

    Article  PubMed  CAS  Google Scholar 

  • Willmann JK et al (2008) US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 246(2):508–518

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu MH, Wang LHV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77(4):1–22

    Google Scholar 

  • Xu JH et al (2012) Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device. Lab Chip 12(11):2029–2036

    Article  PubMed  CAS  Google Scholar 

  • Yan Y et al (2011) Late-phase detection of recent myocardial ischaemia using ultrasound molecular imaging targeted to intercellular adhesion molecule-1. Cardiovasc Res 89(1):175–183

    Article  PubMed  CAS  Google Scholar 

  • Yan F et al (2013) Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control Release 166(3):246–255

    Article  PubMed  CAS  Google Scholar 

  • Yang F et al (2009) Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 30(23–24):3882–3890

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J. Y. W. acknowledges support from Boston University’s College of Engineering Distinguished Faculty Fellowship, T. P. acknowledges support from the NIH/NIGMS T32 GM008764 and the NIH/NIAID T32 AI089673, and C. B. acknowledges support from the National Science Foundation Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Y. Wong Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Pham, T., Beigie, C., Park, Y., Wong, J.Y. (2014). Microbubbles as Theranostics Agents. In: Alonso, M., Garcia-Fuentes, M. (eds) Nano-Oncologicals. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08084-0_12

Download citation

Publish with us

Policies and ethics