Advertisement

Proinflammatory Chemical Signaling: Cytokines

  • Kumi Nagamoto-Combs
  • Colin K. Combs
Chapter

Abstract

An increasing body of data has documented altered cytokine concentrations from Parkinson’s disease brains and its rodent models. These changes have been reported in the periphery as well as in the cerebrospinal fluid, where they may be released from a variety of cell types to possibly traffic to and from the brain. Brain resident macrophage, or microglia, is commonly implicated as the cell type contributing to cytokine elevations in the brain during disease. Beyond serving as biomarkers of disease, many studies indicate that the cytokines directly stimulate both neuroprotective and neurotoxic effects on dopaminergic neurons. In particular, rodent models of disease have allowed mechanistic testing of the correlative findings from human diseased brain to suggest that cytokines such as tumor necrosis factor-alpha and interleukin-1β have pleiotropic roles during disease that may vary based upon temporal concentrations and coincident stimulation.

Keywords

Substantia Nigra Microglial Activation Dopaminergic Cell Peripheral Immune Cell MPTP Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38:1285–91.PubMedGoogle Scholar
  2. 2.
    Banati RB, Daniel SE, Blunt SB. Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord. 1998;13:221–7.PubMedGoogle Scholar
  3. 3.
    Forno LS, DeLanney LE, Irwin I, Di Monte D, Langston JW. Astrocytes and Parkinson’s disease. Prog Brain Res. 1992;94:429–36.PubMedGoogle Scholar
  4. 4.
    Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003;106:518–26.PubMedGoogle Scholar
  5. 5.
    Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience. 2000;95:425–32.PubMedGoogle Scholar
  6. 6.
    Sawada M, Imamura K, Nagatsu T. Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl. 2006;70:373–81.PubMedGoogle Scholar
  7. 7.
    Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39:151–70.PubMedGoogle Scholar
  8. 8.
    Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 2000;20:6309–16.PubMedGoogle Scholar
  9. 9.
    Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, et al. Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol. 2007;114:419–24.PubMedGoogle Scholar
  10. 10.
    Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 2006;21:404–12.PubMedGoogle Scholar
  11. 11.
    Ouchi Y, Yagi S, Yokokura M, Sakamoto M. Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord. 2009;15 Suppl 3:S200–4.PubMedGoogle Scholar
  12. 12.
    McGeer PL, Schwab C, Parent A, Doudet D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol. 2003;54:599–604.PubMedGoogle Scholar
  13. 13.
    Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol. 1999;46:598–605.PubMedGoogle Scholar
  14. 14.
    Akiyama H, McGeer PL. Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Res. 1989;489:247–53.PubMedGoogle Scholar
  15. 15.
    Marinova-Mutafchieva L, Sadeghian M, Broom L, Davis JB, Medhurst AD, Dexter DT. Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. J Neurochem. 2009;110:966–75.PubMedGoogle Scholar
  16. 16.
    Castano A, Herrera AJ, Cano J, Machado A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem. 1998;70:1584–92.PubMedGoogle Scholar
  17. 17.
    Herrera AJ, Castaño A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis. 2000;7:429–47.PubMedGoogle Scholar
  18. 18.
    Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002;22:1763–71.PubMedGoogle Scholar
  19. 19.
    Czlonkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Członkowski A. Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration. 1996;5:137–43.PubMedGoogle Scholar
  20. 20.
    Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Członkowski A, Członkowska A. Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology. 1998;39:167–80.PubMedGoogle Scholar
  21. 21.
    Kurkowska-Jastrzebska I, Wrońska A, Kohutnicka M, Członkowski A, Członkowska A. MHC class II positive microglia and lymphocytic infiltration are present in the substantia nigra and striatum in mouse model of Parkinson’s disease. Acta Neurobiol Exp (Wars). 1999;59:1–8.Google Scholar
  22. 22.
    Kurkowska-Jastrzebska I, Wrońska A, Kohutnicka M, Członkowski A, Członkowska A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol. 1999;156:50–61.PubMedGoogle Scholar
  23. 23.
    Francis JW, Von Visger J, Markelonis GJ, Oh TH. Neuroglial responses to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse striatum. Neurotoxicol Teratol. 1995;17:7–12.PubMedGoogle Scholar
  24. 24.
    Liang SM, Liang CM, Chiueh CC. Visualization of interleukin-2-like molecules in MPP(+)-lesioned rat brain. Biochem Biophys Res Commun. 1989;165:1312–8.PubMedGoogle Scholar
  25. 25.
    Ton TG, Jain S, Biggs ML, Thacker EL, Strotmeyer ES, Boudreau R, et al. Markers of inflammation in prevalent and incident Parkinson’s disease in the cardiovascular health study. Parkinsonism Relat Disord. 2012;18:274–8.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol. 2008;167:90–5.PubMedGoogle Scholar
  27. 27.
    Wong KT, Grove JS, Grandinetti A, Curb JD, Yee M, Blanchette P, et al. Association of fibrinogen with Parkinson disease in elderly Japanese–American men: a prospective study. Neuroepidemiology. 2010;34:50–4.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Stypula G, Kunert-Radek J, Stepień H, Zylińska K, Pawlikowski M. Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with Parkinson’s disease. Neuroimmunomodulation. 1996;3:131–4.PubMedGoogle Scholar
  29. 29.
    Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW. Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand. 1999;100:34–41.PubMedGoogle Scholar
  30. 30.
    Hofmann KW, Schuh AF, Saute J, Townsend R, Fricke D, Leke R, et al. Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem Res. 2009;34:1401–4.PubMedGoogle Scholar
  31. 31.
    Bessler H, Djaldetti R, Salman H, Bergman M, Djaldetti M. IL-1 beta, IL-2, IL-6 and TNF-alpha production by peripheral blood mononuclear cells from patients with Parkinson’s disease. Biomed Pharmacother. 1999;53:141–5.PubMedGoogle Scholar
  32. 32.
    Kluter H, Vieregge P, Stolze H, Kirchner H. Defective production of interleukin-2 in patients with idiopathic Parkinson’s disease. J Neurol Sci. 1995;133:134–9.PubMedGoogle Scholar
  33. 33.
    Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos A, Zoga M, et al. Circulating interleukin-15 and RANTES chemokine in Parkinson’s disease. Acta Neurol Scand. 2007;116:374–9.PubMedGoogle Scholar
  34. 34.
    Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos A, Zoga M, et al. Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol Scand. 2009;119:332–7.PubMedGoogle Scholar
  35. 35.
    Hasegawa Y, Inagaki T, Sawada M, Suzumura A. Impaired cytokine production by peripheral blood mononuclear cells and monocytes/macrophages in Parkinson’s disease. Acta Neurol Scand. 2000;101:159–64.PubMedGoogle Scholar
  36. 36.
    Lindqvist D, Kaufman E, Brundin L, Hall S, Surova Y, Hansson O. Non-motor symptoms in patients with Parkinson’s disease – correlations with inflammatory cytokines in serum. PLoS One. 2012;7:e47387.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Marttila RJ, Eskola J, Soppi E, Rinne UK. Immune functions in Parkinson’s disease lymphocyte subsets, concanavalin A-induced suppressor cell activity and in vitro immunoglobulin production. J Neurol Sci. 1985;69:121–31.PubMedGoogle Scholar
  38. 38.
    Saunders JA, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR, et al. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol. 2012;7:927–38.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Fiszer U, Mix E, Fredrikson S, Kostulas V, Link H. Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol Scand. 1994;90:160–6.PubMedGoogle Scholar
  40. 40.
    Fiszer U, Mix E, Fredrikson S, Kostulas V, Olsson T, Link H. Gamma delta+ T cells are increased in patients with Parkinson’s disease. J Neurol Sci. 1994;121:39–45.PubMedGoogle Scholar
  41. 41.
    Bas J, Calopa M, Mestre M, Molleví DG, Cutillas B, Ambrosio S, et al. Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol. 2001;113:146–52.PubMedGoogle Scholar
  42. 42.
    Chiba S, Matsumoto H, Saitoh M, Kasahara M, Matsuya M, Kashiwagi M. A correlation study between serum adenosine deaminase activities and peripheral lymphocyte subsets in Parkinson’s disease. J Neurol Sci. 1995;132:170–3.PubMedGoogle Scholar
  43. 43.
    Hisanaga K, Asagi M, Itoyama Y, Iwasaki Y. Increase in peripheral CD4 bright+ CD8 dull+ T cells in Parkinson disease. Arch Neurol. 2001;58:1580–3.PubMedGoogle Scholar
  44. 44.
    Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T. Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord. 2005;11:493–8.PubMedGoogle Scholar
  45. 45.
    Luo XG, Zhang JJ, Zhang CD, Liu R, Zheng L, Wang XJ, et al. Altered regulation of CD200 receptor in monocyte-derived macrophages from individuals with Parkinson’s disease. Neurochem Res. 2010;35:540–7.PubMedGoogle Scholar
  46. 46.
    Villaran RF, Espinosa-Oliva AM, Sarmiento M, De Pablos RM, Argüelles S, Delgado-Cortés MJ, et al. Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson’s disease. J Neurochem. 2010;114:1687–700.PubMedGoogle Scholar
  47. 47.
    Pott Godoy MC, Ferrari CC, Pitossi FJ. Nigral neurodegeneration triggered by striatal AdIL-1 administration can be exacerbated by systemic IL-1 expression. J Neuroimmunol. 2010;222:29–39.PubMedGoogle Scholar
  48. 48.
    Pott Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ. Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain. 2008;131:1880–94.PubMedGoogle Scholar
  49. 49.
    Castano A, Herrera AJ, Cano J, Machado A. The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem. 2002;81:150–7.PubMedGoogle Scholar
  50. 50.
    Skelly DT, Hennessy E, Dansereau MA, Cunningham C. A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1beta, TNF-alpha and IL-6 challenges in C57BL/6 mice. PLoS One. 2013;8:e69123.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Engler H, Doenlen R, Riether C, Engler A, Niemi MB, Besedovsky HO, et al. Time-dependent alterations of peripheral immune parameters after nigrostriatal dopamine depletion in a rat model of Parkinson’s disease. Brain Behav Immun. 2009;23:518–26.PubMedGoogle Scholar
  52. 52.
    Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Granger GA, Kolb WP. Lymphocyte in vitro cytotoxicity: mechanisms of immune and non-immune small lymphocyte mediated target L cell destruction. J Immunol. 1968;101:111–20.PubMedGoogle Scholar
  54. 54.
    Granger GA, Williams TW. Lymphocyte cytotoxicity in vitro: activation and release of a cytotoxic factor. Nature. 1968;218:1253–4.PubMedGoogle Scholar
  55. 55.
    Kolb WP, Granger GA. Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin. Proc Natl Acad Sci U S A. 1968;61:1250–5.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Williams TW, Granger GA. Lymphocyte in vitro cytotoxicity: lymphotoxins of several mammalian species. Nature. 1968;219:1076–7.PubMedGoogle Scholar
  57. 57.
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975;72:3666–70.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Green S, Dobrjansky A, Carswell EA, Kassel RL, Old LJ, Fiore N, et al. Partial purification of a serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1976;73:381–5.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Ricciardi-Castagnoli P, Pirami L, Righi M, Sacerdote P, Locatelli V, Bianchi M, et al. Cellular sources and effects of tumor necrosis factor-alpha on pituitary cells and in the central nervous system. Ann N Y Acad Sci. 1990;594:156–68.PubMedGoogle Scholar
  60. 60.
    Sawada M, Kondo N, Suzumura A, Marunouchi T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 1989;491:394–7.PubMedGoogle Scholar
  61. 61.
    Hetier E, Ayala J, Bousseau A, Prochiantz A. Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res. 1991;86:407–13.PubMedGoogle Scholar
  62. 62.
    Kinouchi K, Brown G, Pasternak G, Donner DB. Identification and characterization of receptors for tumor necrosis factor-alpha in the brain. Biochem Biophys Res Commun. 1991;181:1532–8.PubMedGoogle Scholar
  63. 63.
    Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.PubMedGoogle Scholar
  64. 64.
    Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23–68.PubMedGoogle Scholar
  65. 65.
    Hehlgans T, Mannel DN. The TNF–TNF receptor system. Biol Chem. 2002;383:1581–5.PubMedGoogle Scholar
  66. 66.
    Dopp JM, Mackenzie-Graham A, Otero GC, Merrill JE. Differential expression, cytokine modulation, and specific functions of type-1 and type-2 tumor necrosis factor receptors in rat glia. J Neuroimmunol. 1997;75:104–12.PubMedGoogle Scholar
  67. 67.
    Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene. 2001;20:6482–91.PubMedGoogle Scholar
  68. 68.
    MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal. 2002;14(6):477–92.PubMedGoogle Scholar
  69. 69.
    MacEwan DJ. TNF ligands and receptors—a matter of life and death. Br J Pharmacol. 2002;135:855–75.PubMedCentralPubMedGoogle Scholar
  70. 70.
    McFarlane SM, Pashmi G, Connell MC, Littlejohn AF, Tucker SJ, Vandenabeele P, et al. Differential activation of nuclear factor-kappaB by tumour necrosis factor receptor subtypes. TNFR1 predominates whereas TNFR2 activates transcription poorly. FEBS Lett. 2002;515:119–26.PubMedGoogle Scholar
  71. 71.
    Mohamed AA, Jupp OJ, Anderson HM, Littlejohn AF, Vandenabeele P, MacEwan DJ, et al. Tumour necrosis factor-induced activation of c-Jun N-terminal kinase is sensitive to caspase-dependent modulation while activation of mitogen-activated protein kinase (MAPK) or p38 MAPK is not. Biochem J. 2002;366:145–55.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Rothe M, Sarma V, Dixit VM, Goeddel DV. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science. 1995;269:1424–7.PubMedGoogle Scholar
  73. 73.
    Chan FK. The pre-ligand binding assembly domain: a potential target of inhibition of tumour necrosis factor receptor function. Ann Rheum Dis. 2000;59 Suppl 1:50–3.Google Scholar
  74. 74.
    Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science. 2000;288:2351–4.PubMedGoogle Scholar
  75. 75.
    Deng GM, Zheng L, Chan FK, Lenardo M. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat Med. 2005;11:1066–72.PubMedGoogle Scholar
  76. 76.
    Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett. 1994;172:151–4.PubMedGoogle Scholar
  77. 77.
    Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, et al. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from Parkinsonian brain. J Neural Transm. 2000;107:335–41.PubMedGoogle Scholar
  78. 78.
    Duke DC, Moran LB, Pearce RK, Graeber MB. The medial and lateral substantia nigra in Parkinson’s disease: mRNA profiles associated with higher brain tissue vulnerability. Neurogenetics. 2007;8:83–94.PubMedGoogle Scholar
  79. 79.
    Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from Parkinsonian patients. Neurosci Lett. 1994;165(1–2):208–10.PubMedGoogle Scholar
  80. 80.
    Scalzo P, Kümmer A, Cardoso F, Teixeira AL. Increased serum levels of soluble tumor necrosis factor-alpha receptor-1 in patients with Parkinson’s disease. J Neuroimmunol. 2009;216:122–5.PubMedGoogle Scholar
  81. 81.
    Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, et al. Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun. 2009;23:55–63.PubMedGoogle Scholar
  82. 82.
    Bongioanni P, Castagna M, Maltinti S, Boccardi B, Dadone F. T-lymphocyte tumor necrosis factor-alpha receptor binding in patients with Parkinson’s disease. J Neurol Sci. 1997;149:41–5.PubMedGoogle Scholar
  83. 83.
    Koziorowski D, Tomasiuk R, Szlufik S, Friedman A. Inflammatory cytokines and NT-proCNP in Parkinson’s disease patients. Cytokine. 2012;60:762–6.PubMedGoogle Scholar
  84. 84.
    Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Bienfait K, et al. The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics. 2010;51:474–9.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Wahner AD, Sinsheimer JS, Bronstein JM, Ritz B. Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease. Arch Neurol. 2007;64:836–40.PubMedGoogle Scholar
  86. 86.
    Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW, et al. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A. 1997;94:3195–9.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Bialecka M, Klodowska-Duda G, Kurzawski M, Slawek J, Gorzkowska A, Opala G, et al. Interleukin-10 (IL10) and tumor necrosis factor alpha (TNF) gene polymorphisms in Parkinson’s disease patients. Parkinsonism Relat Disord. 2008;14:636–40.PubMedGoogle Scholar
  88. 88.
    Kruger R, Hardt C, Tschentscher F, Jäckel S, Kuhn W, Müller T, et al. Genetic analysis of immunomodulating factors in sporadic Parkinson’s disease. J Neural Transm. 2000;107:553–62.PubMedGoogle Scholar
  89. 89.
    Ross OA, O’Neill C, Rea IM, Lynch T, Gosal D, Wallace A, et al. Functional promoter region polymorphism of the proinflammatory chemokine IL-8 gene associates with Parkinson’s disease in the Irish. Hum Immunol. 2004;65:340–6.PubMedGoogle Scholar
  90. 90.
    Pascale E, Passarelli E, Purcaro C, Vestri AR, Fakeri A, Guglielmi R, et al. Lack of association between IL-1beta, TNF-alpha, and IL-10 gene polymorphisms and sporadic Parkinson’s disease in an Italian cohort. Acta Neurol Scand. 2011;124:176–81.PubMedGoogle Scholar
  91. 91.
    Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kaji R, et al. Tumor necrosis factor gene polymorphisms in patients with sporadic Parkinson’s disease. Neurosci Lett. 2001;311:1–4.PubMedGoogle Scholar
  92. 92.
    Wu YR, Feng IH, Lyu RK, Chang KH, Lin YY, Chan H, et al. Tumor necrosis factor-alpha promoter polymorphism is associated with the risk of Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:300–4.PubMedGoogle Scholar
  93. 93.
    Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J. 2002;16:1474–6.PubMedGoogle Scholar
  94. 94.
    Rousselet E, Callebert J, Parain K, Joubert C, Hunot S, Hartmann A, et al. Role of TNF-alpha receptors in mice intoxicated with the Parkinsonian toxin MPTP. Exp Neurol. 2002;177:183–92.PubMedGoogle Scholar
  95. 95.
    Leng A, Mura A, Feldon J, Ferger B. Tumor necrosis factor-alpha receptor ablation in a chronic MPTP mouse model of Parkinson’s disease. Neurosci Lett. 2005;375:107–11.PubMedGoogle Scholar
  96. 96.
    Ferger B, Leng A, Mura A, Hengerer B, Feldon J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem. 2004;89:822–33.PubMedGoogle Scholar
  97. 97.
    McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, et al. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci. 2006;26:9365–75.PubMedCentralPubMedGoogle Scholar
  98. 98.
    De Lella Ezcurra AL, Chertoff M, Ferrari C, Graciarena M, Pitossi F. Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol Dis. 2010;37:630–40.PubMedGoogle Scholar
  99. 99.
    Chertoff M, Di Paolo N, Schoeneberg A, Depino A, Ferrari C, Wurst W, et al. Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor alpha in the nigrostriatal dopaminergic circuit of adult mice. Exp Neurol. 2011;227:237–51.PubMedGoogle Scholar
  100. 100.
    Barger SW, Hörster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A. 1995;92:9328–32.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Li R, Yang L, Lindholm K, Konishi Y, Yue X, Hampel H, et al. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci. 2004;24:1760–71.PubMedGoogle Scholar
  102. 102.
    Chao CC, Hu S. Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev Neurosci. 1994;16:172–9.PubMedGoogle Scholar
  103. 103.
    Gelbard HA, Dzenko KA, DiLoreto D, del Cerro C, del Cerro M, Epstein LG. Neurotoxic effects of tumor necrosis factor alpha in primary human neuronal cultures are mediated by activation of the glutamate AMPA receptor subtype: implications for AIDS neuropathogenesis. Dev Neurosci. 1993;15:417–22.PubMedGoogle Scholar
  104. 104.
    Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci. 2005;25:2566–75.PubMedGoogle Scholar
  105. 105.
    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Chao CC, Hu S, Sheng WS, Peterson PK. Tumor necrosis factor-alpha production by human fetal microglial cells: regulation by other cytokines. Dev Neurosci. 1995;17:97–105.PubMedGoogle Scholar
  107. 107.
    Combs CK, Bates P, Karlo JC, Landreth GE. Regulation of beta-amyloid stimulated proinflammatory responses by peroxisome proliferator-activated receptor alpha. Neurochem Int. 2001;39:449–57.PubMedGoogle Scholar
  108. 108.
    Gimsa U, Peter SV, Lehmann K, Bechmann I, Nitsch R. Axonal damage induced by invading T cells in organotypic central nervous system tissue in vitro: involvement of microglial cells. Brain Pathol. 2000;10:365–77.PubMedGoogle Scholar
  109. 109.
    Ravizza T, Rizzi M, Perego C, Richichi C, Velísková J, Moshé SL, et al. Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsia. 2005;46 Suppl 5:113–7.PubMedGoogle Scholar
  110. 110.
    Tchelingerian JL, Quinonero J, Booss J, Jacque C. Localization of TNF alpha and IL-1 alpha immunoreactivities in striatal neurons after surgical injury to the hippocampus. Neuron. 1993;10:213–24.PubMedGoogle Scholar
  111. 111.
    Yin L, Ohtaki H, Nakamachi T, Dohi K, Iwai Y, Funahashi H, et al. Expression of tumor necrosis factor alpha (TNFalpha) following transient cerebral ischemia. Acta Neurochir Suppl. 2003;86:93–6.PubMedGoogle Scholar
  112. 112.
    Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, et al. Control of synaptic strength by glial TNFalpha. Science. 2002;295:2282–5.PubMedGoogle Scholar
  113. 113.
    Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006;440:1054–9.PubMedGoogle Scholar
  114. 114.
    Romera C, Hurtado O, Botella SH, Lizasoain I, Cárdenas A, Fernández-Tomé P, et al. In vitro ischemic tolerance involves upregulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factor-alpha pathway. J Neurosci. 2004;24:1350–7.PubMedGoogle Scholar
  115. 115.
    Watters O, Pickering M, O’Connor JJ. Preconditioning effects of tumor necrosis factor-alpha and glutamate on calcium dynamics in rat organotypic hippocampal cultures. J Neuroimmunol. 2011;234:27–39.PubMedGoogle Scholar
  116. 116.
    Ogoshi F, Yin HZ, Kuppumbatti Y, Song B, Amindari S, Weiss JH. Tumor necrosis-factor-alpha (TNF-alpha) induces rapid insertion of Ca2+-permeable alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels in a subset of hippocampal pyramidal neurons. Exp Neurol. 2005;193:384–93.PubMedGoogle Scholar
  117. 117.
    Rainey-Smith SR, Andersson DA, Williams RJ, Rattray M. Tumour necrosis factor alpha induces rapid reduction in AMPA receptor-mediated calcium entry in motor neurones by increasing cell surface expression of the GluR2 subunit: relevance to neurodegeneration. J Neurochem. 2010;113:692–703.PubMedGoogle Scholar
  118. 118.
    He P, Liu Q, Wu J, Shen Y. Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons. FASEB J. 2012;26:334–45.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Bliss RM, Finckbone VL, Trice J, Strahlendorf H, Strahlendorf J. Tumor necrosis factor-alpha (TNF-alpha) augments AMPA-induced Purkinje neuron toxicity. Brain Res. 2011;1386:1–14.PubMedGoogle Scholar
  120. 120.
    Combs CK, Karlo JC, Kao SC, Landreth GE. Beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci. 2001;21:1179–88.PubMedGoogle Scholar
  121. 121.
    Jara JH, Singh BB, Floden AM, Combs CK. Tumor necrosis factor alpha stimulates NMDA receptor activity in mouse cortical neurons resulting in ERK-dependent death. J Neurochem. 2007;100:1407–20.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Leonoudakis D, Zhao P, Beattie EC. Rapid tumor necrosis factor alpha-induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity. J Neurosci. 2008;28:2119–30.PubMedGoogle Scholar
  123. 123.
    Yang L, Lindholm K, Konishi Y, Li R, Shen Y. Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci. 2002;22:3025–32.PubMedGoogle Scholar
  124. 124.
    Jarosinski KW, Whitney LW, Massa PT. Specific deficiency in nuclear factor-kappaB activation in neurons of the central nervous system. Lab Invest. 2001;81:1275–88.PubMedGoogle Scholar
  125. 125.
    Listwak SJ, Rathore P, Herkenham M. Minimal NF-kappaB activity in neurons. Neuroscience. 2013;250:282–99.PubMedGoogle Scholar
  126. 126.
    Massa PT, Aleyasin H, Park DS, Mao X, Barger SW. NFkappaB in neurons? The uncertainty principle in neurobiology. J Neurochem. 2006;97:607–18.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Quintana A, Molinero A, Florit S, Manso Y, Comes G, Carrasco J, et al. Diverging mechanisms for TNF-alpha receptors in normal mouse brains and in functional recovery after injury: from gene to behavior. J Neurosci Res. 2007;85:2668–85.PubMedGoogle Scholar
  128. 128.
    Pejovic V, Soskić V, Pan W, Kastin AJ. Brain proteome of mice lacking the receptors for tumor necrosis factor alpha. Proteomics. 2004;4:1461–4.PubMedGoogle Scholar
  129. 129.
    Hartmann A, Mouatt-Prigent A, Faucheux BA, Agid Y, Hirsch EC. FADD: a link between TNF family receptors and caspases in Parkinson’s disease. Neurology. 2002;58:308–10.PubMedGoogle Scholar
  130. 130.
    Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol. 2000;166:29–43.PubMedGoogle Scholar
  131. 131.
    Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, et al. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci U S A. 1997;94:7531–6.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Yamada M, Kida K, Amutuhaire W, Ichinose F, Kaneki M. Gene disruption of caspase-3 prevents MPTP-induced Parkinson’s disease in mice. Biochem Biophys Res Commun. 2010;402:312–8.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Jellinger KA. Recent developments in the pathology of Parkinson’s disease. J Neural Transm Suppl. 2002;(62):347–76.Google Scholar
  134. 134.
    Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010;11:1014–22.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Fujita H, Inoue Y, Seto K, Komitsu N, Aihara M. Interleukin-37 is elevated in subjects with atopic dermatitis. J Dermatol Sci. 2013;69:173–5.PubMedGoogle Scholar
  136. 136.
    Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM, et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci U S A. 1984;81:7907–11.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM, et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. J Immunol. 2007;178:5413–7.PubMedGoogle Scholar
  138. 138.
    March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Price V, et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985;315:641–7.PubMedGoogle Scholar
  139. 139.
    Gubler U, Chua AO, Stern AS, Hellmann CP, Vitek MP, DeChiara TM, et al. Recombinant human interleukin 1 alpha: purification and biological characterization. J Immunol. 1986;136:2492–7.PubMedGoogle Scholar
  140. 140.
    Dinarello CA. Biology of interleukin 1. FASEB J. 1988;2:108–15.PubMedGoogle Scholar
  141. 141.
    Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992;356:768–74.PubMedGoogle Scholar
  142. 142.
    Kilian PL, Kaffka KL, Stern AS, Woehle D, Benjamin WR, Dechiara TM. Interleukin 1 alpha and interleukin 1 beta bind to the same receptor on T cells. J Immunol. 1986;136:4509–14.PubMedGoogle Scholar
  143. 143.
    Dripps DJ, Brandhuber BJ, Thompson RC, Eisenberg SP. Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. J Biol Chem. 1991;266:10331–6.PubMedGoogle Scholar
  144. 144.
    Hannum CH, Wilcox CJ, Arend WP, Joslin FG, Dripps DJ, Heimdal PL, et al. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature. 1990;343:336–40.PubMedGoogle Scholar
  145. 145.
    Eisenberg SP, Brewer MT, Verderber E, Heimdal P, Brandhuber BJ, Thompson RC. Interleukin 1 receptor antagonist is a member of the interleukin 1 gene family: evolution of a cytokine control mechanism. Proc Natl Acad Sci U S A. 1991;88:5232–6.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Arend WP. Interleukin 1 receptor antagonist. A new member of the interleukin 1 family. J Clin Invest. 1991;88:1445–51.PubMedCentralPubMedGoogle Scholar
  147. 147.
    O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev. 2008;226:10–8.PubMedGoogle Scholar
  148. 148.
    Stylianou E, O’Neill LA, Rawlinson L, Edbrooke MR, Woo P, Saklatvala J. Interleukin 1 induces NF-kappa B through its type I but not its type II receptor in lymphocytes. J Biol Chem. 1992;267:15836–41.PubMedGoogle Scholar
  149. 149.
    Sims JE, Acres RB, Grubin CE, McMahan CJ, Wignall JM, March CJ, et al. Cloning the interleukin 1 receptor from human T cells. Proc Natl Acad Sci U S A. 1989;86:8946–50.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Greenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA, Ju G. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J Biol Chem. 1995;270:13757–65.PubMedGoogle Scholar
  151. 151.
    Huang J, Gao X, Li S, Cao Z. Recruitment of IRAK to the interleukin 1 receptor complex requires interleukin 1 receptor accessory protein. Proc Natl Acad Sci U S A. 1997;94:12829–32.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Radons J, Gabler S, Wesche H, Korherr C, Hofmeister R, Falk W. Identification of essential regions in the cytoplasmic tail of interleukin-1 receptor accessory protein critical for interleukin-1 signaling. J Biol Chem. 2002;277:16456–63.PubMedGoogle Scholar
  153. 153.
    Brikos C, Wait R, Begum S, O’Neill LA, Saklatvala J. Mass spectrometric analysis of the endogenous type I interleukin-1 (IL-1) receptor signaling complex formed after IL-1 binding identifies IL-1RAcP, MyD88, and IRAK-4 as the stable components. Mol Cell Proteomics. 2007;6:1551–9.PubMedGoogle Scholar
  154. 154.
    Cao Z, Henzel WJ, Gao X. IRAK: a kinase associated with the interleukin-1 receptor. Science. 1996;271:1128–31.PubMedGoogle Scholar
  155. 155.
    Qin J, Jiang Z, Qian Y, Casanova JL, Li X. IRAK4 kinase activity is redundant for interleukin-1 (IL-1) receptor-associated kinase phosphorylation and IL-1 responsiveness. J Biol Chem. 2004;279:26748–53.PubMedGoogle Scholar
  156. 156.
    Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I[kappa]B as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature. 1999;398:252–6.PubMedGoogle Scholar
  157. 157.
    Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412:346–51.PubMedGoogle Scholar
  158. 158.
    Dinarello CA. The interleukin-1 family: 10 years of discovery. FASEB J. 1994;8:1314–25.PubMedGoogle Scholar
  159. 159.
    Kampschmidt RF, Pulliam LA, Merriman CR. Further similarities of endogenous pyrogen and leukocytic endogenous mediator. Am J Physiol Cell Physiol. 1978;235:C118–21.Google Scholar
  160. 160.
    Dinarello CA. Interleukin-1. Rev Infect Dis. 1984;6:51–95.PubMedGoogle Scholar
  161. 161.
    Gery I, Waksman BH. Potentiation of the T-lymphocyte response to mitogens. II. The cellular source of potentiating mediator(s). J Exp Med. 1972;136:143–55.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Murphy PA, Simon PL, Willoughby WF. Endogenous pyrogens made by rabbit peritoneal exudate cells are identical with lymphocyte-activating factors made by rabbit alveolar macrophages. J Immunol. 1980;124:2498–501.PubMedGoogle Scholar
  163. 163.
    Morrissey PJ, Mochizuki DY. Interleukin-1 is identical to hemopoietin-1: studies on its therapeutic effects on myelopoiesis and lymphopoiesis. Biotherapy. 1989;1:281–91.PubMedGoogle Scholar
  164. 164.
    Altman LC, Snyderman R, Oppenheim JJ, Mergenhagen SE. A human mononuclear leukocyte chemotactic factor: characterization, specificity and kinetics of production by homologous leukocytes. J Immunol. 1973;110:801–10.PubMedGoogle Scholar
  165. 165.
    Baracos V, Rodemann HP, Dinarello CA, Goldberg AL. Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N Engl J Med. 1983;308:553–8.PubMedGoogle Scholar
  166. 166.
    Saklatvala J, Dingle JT. Identification of catabolin, a protein from synovium which induces degradation of cartilage in organ culture. Biochem Biophys Res Commun. 1980;96:1225–31.PubMedGoogle Scholar
  167. 167.
    Dewhirst FE, Stashenko PP, Mole JE, Tsurumachi T. Purification and partial sequence of human osteoclast-activating factor: identity with interleukin 1 beta. J Immunol. 1985;135:2562–8.PubMedGoogle Scholar
  168. 168.
    Dunne A. Inflammasome activation: from inflammatory disease to infection. Biochem Soc Trans. 2011;39:669–73.PubMedGoogle Scholar
  169. 169.
    Leal MC, Casabona JC, Puntel M, Pitossi FJ. Interleukin-1beta and tumor necrosis factor-alpha: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci. 2013;7:53.PubMedCentralPubMedGoogle Scholar
  170. 170.
    Takao T, Tracey DE, Mitchell WM, De Souza EB. Interleukin-1 receptors in mouse brain: characterization and neuronal localization. Endocrinology. 1990;127:3070–8.PubMedGoogle Scholar
  171. 171.
    Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from Parkinsonian patients. Neurosci Lett. 1994;180:147–50.PubMedGoogle Scholar
  172. 172.
    Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202:17–20.PubMedGoogle Scholar
  173. 173.
    Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett. 1996;211:13–6.PubMedGoogle Scholar
  174. 174.
    Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86:7611–5.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Minami M, Kuraishi Y, Yabuuchi K, Yamazaki A, Satoh M. Induction of interleukin-1 beta mRNA in rat brain after transient forebrain ischemia. J Neurochem. 1992;58:390–2.PubMedGoogle Scholar
  176. 176.
    Liu T, McDonnell PC, Young PR, White RF, Siren AL, Hallenbeck JM, et al. Interleukin-1 beta mRNA expression in ischemic rat cortex. Stroke. 1993;24:1746–50. discussion 1750–1.PubMedGoogle Scholar
  177. 177.
    Buttini M, Sauter A, Boddeke HW. Induction of interleukin-1 beta mRNA after focal cerebral ischaemia in the rat. Brain Res Mol Brain Res. 1994;23:126–34.PubMedGoogle Scholar
  178. 178.
    Wang X, Yue TL, Barone FC, White RF, Gagnon RC, Feuerstein GZ. Concomitant cortical expression of TNF-alpha and IL-1 beta mRNAs follows early response gene expression in transient focal ischemia. Mol Chem Neuropathol. 1994;23:103–14.PubMedGoogle Scholar
  179. 179.
    Hillhouse EW, Kida S, Iannotti F. Middle cerebral artery occlusion in the rat causes a biphasic production of immunoreactive interleukin-1beta in the cerebral cortex. Neurosci Lett. 1998;249:177–9.PubMedGoogle Scholar
  180. 180.
    Davies CA, et al. The progression and topographic distribution of interleukin-1beta expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 1999;19:87–98.PubMedGoogle Scholar
  181. 181.
    Taupin V, Toulmond S, Serrano A, Benavides J, Zavala F. Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre- and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J Neuroimmunol. 1993;42:177–85.PubMedGoogle Scholar
  182. 182.
    Sandhir R, Gregory E, He YY, Berman NE. Upregulation of inflammatory mediators in a model of chronic pain after spinal cord injury. Neurochem Res. 2011;36:856–62.PubMedCentralPubMedGoogle Scholar
  183. 183.
    Stammers AT, Liu J, Kwon BK. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res. 2012;90:782–90.PubMedGoogle Scholar
  184. 184.
    Minami M, Kuraishi Y, Yamaguchi T, Nakai S, Hirai Y, Satoh M. Convulsants induce interleukin-1β messenger RNA in rat brain. Biochem Biophys Res Commun. 1990;171:832–7.PubMedGoogle Scholar
  185. 185.
    Yabuuchi K, Minami M, Katsumata S, Satoh M. In situ hybridization study of interleukin-1 beta mRNA induced by kainic acid in the rat brain. Brain Res Mol Brain Res. 1993;20:153–61.PubMedGoogle Scholar
  186. 186.
    Bagetta G, Corasaniti MT, Berliocchi L, Nisticó R, Giammarioli AM, Malorni W, et al. Involvement of interleukin-1β in the mechanism of human immunodeficiency virus type 1 (HIV-1) recombinant protein gp120-induced apoptosis in the neocortex of rat. Neuroscience. 1999;89:1051–66.PubMedGoogle Scholar
  187. 187.
    Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debré P, et al. FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci. 1999;19:3440–7.PubMedGoogle Scholar
  188. 188.
    McGeer PL, Yasojima K, McGeer EG. Association of interleukin-1 beta polymorphisms with idiopathic Parkinson’s disease. Neurosci Lett. 2002;326:67–9.PubMedGoogle Scholar
  189. 189.
    Schulte T, Schöls L, Müller T, Woitalla D, Berger K, Krüger R. Polymorphisms in the interleukin-1 alpha and beta genes and the risk for Parkinson’s disease. Neurosci Lett. 2002;326:70–2.PubMedGoogle Scholar
  190. 190.
    Mattila KM, Rinne JO, Lehtimäki T, Röyttä M, Ahonen JP, Hurme M. Association of an interleukin 1B gene polymorphism (−511) with Parkinson’s disease in Finnish patients. J Med Genet. 2002;39:400–2.PubMedCentralPubMedGoogle Scholar
  191. 191.
    Arman A, Isik N, Coker A, Candan F, Becit KS, List EO. Association between sporadic Parkinson disease and interleukin-1 beta −511 gene polymorphisms in the Turkish population. Eur Cytokine Netw. 2010;21:116–21.PubMedGoogle Scholar
  192. 192.
    Chu K, Zhou X, Luo BY. Cytokine gene polymorphisms and Parkinson’s disease: a meta-analysis. Can J Neurol Sci. 2012;39:58–64.PubMedGoogle Scholar
  193. 193.
    Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kuno S. Influence of interleukin-1beta gene polymorphisms on age-at-onset of sporadic Parkinson’s disease. Neurosci Lett. 2000;284:73–6.PubMedGoogle Scholar
  194. 194.
    Nishimura M, Kuno S, Kaji R, Yasuno K, Kawakami H. Glutathione-S-transferase-1 and interleukin-1beta gene polymorphisms in Japanese patients with Parkinson’s disease. Mov Disord. 2005;20:901–2.PubMedGoogle Scholar
  195. 195.
    Liu GJ, Feng RN, Luo C, Bi S. Lack of association between interleukin-1 alpha, beta polymorphisms and Parkinson’s disease. Neurosci Lett. 2010;480:158–61.PubMedGoogle Scholar
  196. 196.
    Mogi M, Togari A, Ogawa M, Ikeguchi K, Shizuma N, Fan D, et al. Effects of repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice on interleukin-1β and nerve growth factor in the striatum. Neurosci Lett. 1998;250:25–8.PubMedGoogle Scholar
  197. 197.
    Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, del Rey A, et al. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci. 2003;18:2731–42.PubMedGoogle Scholar
  198. 198.
    Giulian D, Lachman LB. Interleukin-1 stimulation of astroglial proliferation after brain injury. Science. 1985;228:497–9.PubMedGoogle Scholar
  199. 199.
    Saura J, Parés M, Bové J, Pezzi S, Alberch J, Marin C, et al. Intranigral infusion of interleukin-1β activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem. 2003;85:651–61.PubMedGoogle Scholar
  200. 200.
    Nakao N, Itakura T, Uematsu Y, Nakai M, Komai N, Furukawa S. Pretreatment with interleukin-1 enhances survival of sympathetic ganglionic neuron grafts. Neurol Med Chir. 1994;34:407–11.Google Scholar
  201. 201.
    Heese K, Hock C, Otten U. Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem. 1998;70:699–707.PubMedGoogle Scholar
  202. 202.
    Koprich JB, Reske-Nielsen C, Mithal P, Isacson O. Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflammation. 2008;5:8.PubMedCentralPubMedGoogle Scholar
  203. 203.
    Klevenyi P, Andreassen O, Ferrante RJ, Schleicher Jr JR, Friedlander RM, Beal MF. Transgenic mice expressing a dominant negative mutant interleukin-1beta converting enzyme show resistance to MPTP neurotoxicity. Neuroreport. 1999;10:635–8.PubMedGoogle Scholar
  204. 204.
    Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis. 2006;24:183–93.PubMedGoogle Scholar
  205. 205.
    Loddick SA, Wong ML, Bongiorno PB, Gold PW, Licinio J, Rothwell NJ. Endogenous interleukin-1 receptor antagonist is neuroprotective. Biochem Biophys Res Commun. 1997;234:211–5.PubMedGoogle Scholar
  206. 206.
    Hailer NP, Vogt C, Korf HW, Dehghani F. Interleukin-1beta exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures. Eur J Neurosci. 2005;21:2347–60.PubMedGoogle Scholar
  207. 207.
    Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5:629–40.PubMedGoogle Scholar
  208. 208.
    Carvey PM, Punati A, Newman MB. Progressive dopamine neuron loss in Parkinson’s disease: the multiple hit hypothesis. Cell Transplant. 2006;15:239–50.PubMedGoogle Scholar
  209. 209.
    Sulzer D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci. 2007;30:244–50.PubMedGoogle Scholar
  210. 210.
    Ferrari CC, Tarelli R. Parkinson’s disease and systemic inflammation. Parkinsons Dis. 2011;2011:436813.PubMedCentralPubMedGoogle Scholar
  211. 211.
    Deleidi M, Gasser T. The role of inflammation in sporadic and familial Parkinson’s disease. Cell Mol Life Sci. 2013;70:4259–73.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Basic SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksUSA

Personalised recommendations