Skip to main content

Neuropathology of Parkinson’s Disease

  • Chapter
  • First Online:
Inflammation in Parkinson's Disease

Abstract

Parkinson’s disease (PD), one of the most frequent neurodegenerative disorders, is a progressive multiorgan proteinopathy caused by misfolded α-synuclein (α-syn) with variegated motor and nonmotor symptoms owing to a spreading process of synaptic and neuronal loss. Deposition of abnormal α-syn, the major protein marker of PD and other synucleinopathies, occurs first in presynaptic terminals and causes nerve cell loss and disturbance of neurotransmission via axonal degeneration. Morphological features of PD are degeneration of the dopaminergic striatonigral system, responsible for the core motor deficits, and a multifocal involvement of the central, peripheral, and autonomic nervous system and other organs associated with widespread occurrence of Lewy bodies in neurons and dystrophic Lewy neurites in cell processes. The resulting striatal dopamine deficiency and other complex biochemical deficits cause the heterogeneous clinical picture of the disease. Recent research has provided insights into the development, spreading, and staging of α-syn and its relation with Lewy pathology and clinical deficits. However, many challenges remain including the role of α-syn in the course of neurodegeneration, its interaction with other proteins and its prion-like spread and progression of the disease. Many factors in the pathogenesis of PD and the causes of neuronal cell death are still poorly understood. Although genetic and experimental models have contributed to exploring the pathomechanisms of PD, there is still lack of an optimal animal model, and the etiology of this incurable disease is far from being elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011;26 Suppl 1:S1–58.

    PubMed  Google Scholar 

  2. Bach JP, Ziegler U, Deuschl G, Dodel R, Doblhammer-Reiter G. Projected numbers of people with movement disorders in the years 2030 and 2050. Mov Disord. 2011;26:2286–90.

    PubMed  Google Scholar 

  3. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.

    CAS  PubMed  Google Scholar 

  4. Jellinger KA. Lewy body disorders. In: Youdim MBH, Riederer P, Mandel SA, Battistin L, Lajtha A, editors. Degenerative diseases of the nervous system. New York: Springer Science; 2007. p. 267–343.

    Google Scholar 

  5. Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Braak H, Del Tredici K. Invited article: nervous system pathology in sporadic Parkinson disease. Neurology. 2008;70:1916–25.

    PubMed  Google Scholar 

  7. Fumimura Y, Ikemura M, Saito Y, Sengoku R, Kanemaru K, Sawabe M, et al. Analysis of the adrenal gland is useful for evaluating pathology of the peripheral autonomic nervous system in Lewy body disease. J Neuropathol Exp Neurol. 2007;66:354–62.

    PubMed  Google Scholar 

  8. Ikemura M, Saito Y, Sengoku R, Sakiyama Y, Hatsuta H, Kanemaru K, et al. Lewy body pathology involves cutaneous nerves. J Neuropathol Exp Neurol. 2008;67:945–53.

    PubMed  Google Scholar 

  9. Mu L, Sobotka S, Chen J, Su H, Sanders I, Adler CH, et al. Alpha-synuclein pathology and axonal degeneration of the peripheral motor nerves innervating pharyngeal muscles in Parkinson disease. J Neuropathol Exp Neurol. 2013;72:119–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, et al. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain. 2008;131:642–50.

    PubMed  Google Scholar 

  11. Wakabayashi K, Mori F, Tanji K, Orimo S, Takahashi H. Involvement of the peripheral nervous system in synucleinopathies, tauopathies and other neurodegenerative proteinopathies of the brain. Acta Neuropathol. 2010;120:1–12.

    PubMed  Google Scholar 

  12. Jellinger KA. The role of alpha-synuclein in neurodegeneration – an update. Transl Neurosci. 2012;3:75–122.

    Google Scholar 

  13. Jellinger KA. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord. 2012;27:8–30.

    CAS  PubMed  Google Scholar 

  14. Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol. 2013;47:495–508.

    CAS  PubMed  Google Scholar 

  15. Halliday G, McCann H, Shepherd C. Evaluation of the Braak hypothesis: how far can it explain the pathogenesis of Parkinson’s disease? Expert Rev Neurother. 2012;12:673–86.

    CAS  PubMed  Google Scholar 

  16. DelleDonne A, Klos KJ, Fujishiro H, Ahmed Z, Parisi JE, Josephs KA, et al. Incidental Lewy body disease and preclinical Parkinson disease. Arch Neurol. 2008;65:1074–80.

    PubMed  Google Scholar 

  17. Dickson DW, Fujishiro H, Delledonne A, Menke J, Ahmed Z, Klos KJ, et al. Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta Neuropathol. 2008;115:437–44.

    PubMed  Google Scholar 

  18. Bloch A, Probst A, Bissig H, Adams H, Tolnay M. Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol. 2006;32:284–95.

    CAS  PubMed  Google Scholar 

  19. Braak H, Sastre M, Bohl JR, de Vos RA, Del Tredici K. Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 2007;113:421–9.

    PubMed  Google Scholar 

  20. Gold A, Turkalp ZT, Munoz DG. Enteric alpha-synuclein expression is increased in Parkinson’s disease but not Alzheimer’s disease. Mov Disord. 2013;28:237–40.

    CAS  PubMed  Google Scholar 

  21. Probst A, Bloch A, Tolnay M. New insights into the pathology of Parkinson’s disease: does the peripheral autonomic system become central? Eur J Neurol. 2008;15 Suppl 1:1–4.

    PubMed  Google Scholar 

  22. Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, et al. The second brain and Parkinson’s disease. Eur J Neurosci. 2009;30:735–41.

    PubMed  Google Scholar 

  23. Phillips RJ, Walter GC, Wilder SL, Baronowsky EA, Powley TL. Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: autonomic pathway implicated in Parkinson’s disease? Neuroscience. 2008;153:733–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    PubMed  Google Scholar 

  25. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33:599–614.

    CAS  PubMed  Google Scholar 

  26. Akhtar RS, Stern MB. New concepts in the early and preclinical detection of Parkinson’s disease: therapeutic implications. Expert Rev Neurother. 2012;12:1429–38.

    CAS  PubMed  Google Scholar 

  27. Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8:464–74.

    CAS  PubMed  Google Scholar 

  28. Lang AE. A critical appraisal of the premotor symptoms of Parkinson’s disease: potential usefulness in early diagnosis and design of neuroprotective trials. Mov Disord. 2011;26:775–83.

    PubMed  Google Scholar 

  29. Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med. 2012;2:a008870.

    PubMed Central  PubMed  Google Scholar 

  30. Pfeiffer RF, Bodis-Wollner I, editors. Parkinson’s disease and nonmotor dysfunction. New York: Springer Science + Business Media; 2013.

    Google Scholar 

  31. Tolosa E, Santamaria J, Gaig C, Compta Y. Nonmotor aspects of Parkinson’s disease. In: Schapira AHV, Lang AET, Fahn S, editors. Movement disorders 4. Philadelphia: Saunders-Elsevier; 2010. p. 229–51.

    Google Scholar 

  32. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23:837–44.

    PubMed  Google Scholar 

  33. Foltynie T, Brayne C, Barker RA. The heterogeneity of idiopathic Parkinson’s disease. J Neurol. 2002;249:138–45.

    PubMed  Google Scholar 

  34. Rajput AH, Voll A, Rajput ML, Robinson CA, Rajput A. Course in Parkinson disease subtypes: A 39-year clinicopathologic study. Neurology. 2009;73:206–12.

    CAS  PubMed  Google Scholar 

  35. Stern MB, Lang A, Poewe W. Toward a redefinition of Parkinson’s disease. Mov Disord. 2012;27:54–60.

    PubMed  Google Scholar 

  36. Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol. 2011;122:187–204.

    CAS  PubMed  Google Scholar 

  37. Selikhova M, Williams DR, Kempster PA, Holton JL, Revesz T, Lees AJ. A clinico-pathological study of subtypes in Parkinson’s disease. Brain. 2009;132:2947–57.

    CAS  PubMed  Google Scholar 

  38. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of Parkinsonian syndromes in a specialist movement disorder service. Brain. 2002;125:861–70.

    PubMed  Google Scholar 

  39. Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009;373:2055–66.

    CAS  PubMed  Google Scholar 

  40. Litvan I, Bhatia KP, Burn DJ, Goetz CG, Lang AE, McKeith I, et al. Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord. 2003;18:467–86.

    PubMed  Google Scholar 

  41. Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM, et al. Diagnostic criteria for the neuropathological assessment of Parkinson disease: Report of the Neuropathology and Genetics Working Group of the Second International Brainstorming Conference on Parkinson disease. Lancet Neurol. 2009;8:1150–7.

    CAS  PubMed  Google Scholar 

  42. Dickson DW. Parkinson’s disease and Parkinsonism: neuropathology. Cold Spring Harb Perspect Med. 2012;2:a009258.

    PubMed Central  PubMed  Google Scholar 

  43. Halliday G, Lees A, Stern M. Milestones in Parkinson’s disease–clinical and pathologic features. Mov Disord. 2011;26:1015–21.

    PubMed  Google Scholar 

  44. Gasser T, Hardy J, Mizuno Y. Milestones in PD genetics. Mov Disord. 2011;26:1042–8.

    PubMed  Google Scholar 

  45. Hirsch EC, Jenner P, Przedborski S. Pathogenesis of Parkinson’s disease. Mov Disord. 2013;28:24–30.

    CAS  PubMed  Google Scholar 

  46. Jellinger KA. Synuclein and Parkinson’s disease: an update. In: Martinez A, Gil C, editors. Emerging drugs and targets for Parkinson’s disease. London: The Royal Society of Chemistry; 2013. p. 175–214.

    Google Scholar 

  47. Duda JE, Dickson DW. Neuropathology of Parkinson’s disease. In: Pfeiffer RF, Wszolek ZK, Ebadi M, editors. Parkinson’s disease. 2nd ed. Boca Raton: CRC Press; 2013. p. 492–506.

    Google Scholar 

  48. Halliday G, Murphy K. Pathology of Parkinson’s disease – an overview. In: Schapira AHV, Lang AET, Fahn S, editors. Movement disorders 4. Philadelphia: Saunders-Elsevier; 2010. p. 132–54.

    Google Scholar 

  49. Jellinger KA. Parkinson’s disease. In: Dickson DW, Weller RO, editors. Neurodegeneration: the molecular pathology of dementia and movement disorders. 2nd ed. Oxford: Blackwell Publishing Ltd.; 2011. p. 194–223.

    Google Scholar 

  50. Houlden H, Singleton AB. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol. 2012;124:325–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Poulopoulos M, Levy OA, Alcalay RN. The neuropathology of genetic Parkinson’s disease. Mov Disord. 2012;27:831–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Muntane G, Dalfo E, Martinez A, Ferrer I. Phosphorylation of tau and alpha-synuclein in synaptic-enriched fractions of the frontal cortex in Alzheimer’s disease, and in Parkinson’s disease and related alpha-synucleinopathies. Neuroscience. 2008;152:913–23.

    CAS  PubMed  Google Scholar 

  53. Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol. 2010;120:131–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122(Pt 8):1437–48.

    PubMed  Google Scholar 

  55. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med. 1988;318:876–80.

    CAS  PubMed  Google Scholar 

  56. Rajput AH, Sitte HH, Rajput A, Fenton ME, Pifl C, Hornykiewicz O. Globus pallidus dopamine and Parkinson motor subtypes: clinical and brain biochemical correlation. Neurology. 2008;70:1403–10.

    CAS  PubMed  Google Scholar 

  57. Porritt MJ, Kingsbury AE, Hughes AJ, Howells DW. Striatal dopaminergic neurons are lost with Parkinson’s disease progression. Mov Disord. 2006;21:2208–11.

    PubMed  Google Scholar 

  58. Tandé D, Hoglinger G, Debeir T, Freundlieb N, Hirsch EC, Francois C. New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain. 2006;129:1194–200.

    PubMed  Google Scholar 

  59. Mundinano IC, Caballero MC, Ordonez C, Hernandez M, DiCaudo C, Marcilla I, et al. Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol. 2011;122:61–74.

    CAS  PubMed  Google Scholar 

  60. de la Fuente-Fernandez R, Schulzer M, Kuramoto L, Cragg J, Ramachandiran N, Au WL, et al. Age-specific progression of nigrostriatal dysfunction in Parkinson’s disease. Ann Neurol. 2011;69:803–10.

    PubMed  Google Scholar 

  61. Lee SH, Kim SS, Tae WS, Lee SY, Choi JW, Koh SB, et al. Regional volume analysis of the Parkinson disease brain in early disease stage: gray matter, white matter, striatum, and thalamus. AJNR Am J Neuroradiol. 2011;32:682–7.

    CAS  PubMed  Google Scholar 

  62. Shih MC, Franco de Andrade LA, Amaro Jr E, Felicio AC, Ferraz HB, Wagner J, et al. Higher nigrostriatal dopamine neuron loss in early than late onset Parkinson’s disease? – a [99mTc]-TRODAT-1 SPECT study. Mov Disord. 2007;22:863–6.

    PubMed  Google Scholar 

  63. Ma SY, Roytta M, Rinne JO, Collan Y, Rinne UK. Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using disector counts. J Neurol Sci. 1997;151:83–7.

    CAS  PubMed  Google Scholar 

  64. Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ. Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal (18)F-dopa PET study. Neuroimage. 2011;56:1463–8.

    CAS  PubMed  Google Scholar 

  65. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20:415–55.

    CAS  PubMed  Google Scholar 

  66. Ziegler DA, Wonderlick JS, Ashourian P, Hansen LA, Young JC, Murphy AJ, et al. Substantia nigra volume loss before basal forebrain degeneration in early Parkinson disease. JAMA Neurol. 2013;70:241–7.

    PubMed  Google Scholar 

  67. Rudow G, O’Brien R, Savonenko AV, Resnick SM, Zonderman AB, Pletnikova O, et al. Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol. 2008;115:461–70.

    PubMed Central  PubMed  Google Scholar 

  68. Djaldetti R, Lorberboym M, Karmon Y, Treves TA, Ziv I, Melamed E. Residual striatal dopaminergic nerve terminals in very long-standing Parkinson’s disease: a single photon emission computed tomography imaging study. Mov Disord. 2011;26:327–30.

    PubMed  Google Scholar 

  69. Kovacs GG, Milenkovic IJ, Preusser M, Budka H. Nigral burden of alpha-synuclein correlates with striatal dopamine deficit. Mov Disord. 2008;23:1608–12.

    PubMed  Google Scholar 

  70. Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012;135:2058–73.

    PubMed  Google Scholar 

  71. Ma SY, Ciliax BJ, Stebbins G, Jaffar S, Joyce JN, Cochran EJ, et al. Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol. 1999;409:25–37.

    CAS  PubMed  Google Scholar 

  72. Cabello CR, Thune JJ, Pakkenberg H, Pakkenberg B. Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol Appl Neurobiol. 2002;28:283–91.

    CAS  PubMed  Google Scholar 

  73. Kingsbury AE, Marsden CD, Foster OJ. The vulnerability of nigral neurons to Parkinson’s disease is unrelated to their intrinsic capacity for dopamine synthesis: an in situ hybridization study. Mov Disord. 1999;14:206–18.

    CAS  PubMed  Google Scholar 

  74. McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord. 2008;23:474–83.

    PubMed  Google Scholar 

  75. Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013;62:132–44.

    CAS  PubMed  Google Scholar 

  76. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8:382–97.

    CAS  PubMed  Google Scholar 

  77. Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol. 2009;89:277–87.

    CAS  PubMed  Google Scholar 

  78. Pradhan S, Andreasson K. Commentary: progressive inflammation as a contributing factor to early development of Parkinson’s disease. Exp Neurol. 2013;241:148–55.

    PubMed  Google Scholar 

  79. Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis. 2010;37:510–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol. 2012;88:69–132.

    CAS  PubMed  Google Scholar 

  81. Alvarez-Erviti L, Couch Y, Richardson J, Cooper JM, Wood MJ. Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. Neurosci Res. 2011;69:337–42.

    CAS  PubMed  Google Scholar 

  82. Wakabayashi K, Mori F, Takahashi H. Progression patterns of neuronal loss and Lewy body pathology in the substantia nigra in Parkinson’s disease. Parkinsonism Relat Disord. 2006;12(suppl):S92–8.

    Google Scholar 

  83. Greffard S, Verny M, Bonnet AM, Seilhean D, Hauw JJ, Duyckaerts C. A stable proportion of Lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death. Neurobiol Aging. 2008;31:99–103.

    PubMed  Google Scholar 

  84. Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol. 2010;67:715–25.

    PubMed Central  PubMed  Google Scholar 

  85. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 2013;136: 2419–31.

    PubMed Central  PubMed  Google Scholar 

  86. Braak H, Del Tredici K. Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol. 2009;201:1–119.

    PubMed  Google Scholar 

  87. Zhou ZD, Lan YH, Tan EK, Lim TM. Iron species-mediated dopamine oxidation, proteasome inhibition, and dopaminergic cell demise: implications for iron-related dopaminergic neuron degeneration. Free Radic Biol Med. 2010;49:1856–71.

    CAS  PubMed  Google Scholar 

  88. Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC. Neuromelanin-associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem. 2003;86:1142–8.

    CAS  PubMed  Google Scholar 

  89. Lv Z, Jiang H, Xu H, Song N, Xie J. Increased iron levels correlate with the selective nigral dopaminergic neuron degeneration in Parkinson’s disease. J Neural Transm. 2011;118:361–9.

    CAS  PubMed  Google Scholar 

  90. Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol. 2010;84:825–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Sian-Hulsmann J, Mandel S, Youdim MB, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem. 2011;118:939–57.

    PubMed  Google Scholar 

  92. Wypijewska A, Galazka-Friedman J, Bauminger ER, Wszolek ZK, Schweitzer KJ, Dickson DW, et al. Iron and reactive oxygen species activity in Parkinsonian substantia nigra. Parkinsonism Relat Disord. 2010;16:329–33.

    PubMed  Google Scholar 

  93. Halliday GM, Ophof A, Broe M, Jensen PH, Kettle E, Fedorow H, et al. Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain. 2005;128:2654–64.

    PubMed  Google Scholar 

  94. Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M. Alpha-Synuclein expression is modulated at the translational level by iron. Neuroreport. 2012;23:576–80.

    CAS  PubMed  Google Scholar 

  95. Levin J, Högen T, Hillmer AS, Bader B, Schmidt F, Kamp F, et al. Generation of ferric iron links oxidative stress to alpha-synuclein oligomer formation. J Parkinsons Dis. 2011;1:205–16.

    CAS  PubMed  Google Scholar 

  96. Fasano M, Bergamasco B, Lopiano L. Modifications of the iron-neuromelanin system in Parkinson’s disease. J Neurochem. 2006;96:909–16.

    CAS  PubMed  Google Scholar 

  97. Guerrero E, Vasudevaraju P, Hegde ML, Britton GB, Rao KS. Recent advances in alpha-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease. Mol Neurobiol. 2013;47:525–36.

    CAS  PubMed  Google Scholar 

  98. Ruiperez V, Darios F, Davletov B. Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res. 2010;49:420–8.

    CAS  PubMed  Google Scholar 

  99. Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, et al. Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol. 2000;166:127–35.

    CAS  PubMed  Google Scholar 

  100. Mogi M, Togari A, Kondo T, Mizuno Y, Kogure O, Kuno S, et al. Glial cell line-derived neurotrophic factor in the substantia nigra from control and Parkinsonian brains. Neurosci Lett. 2001;300:179–81.

    CAS  PubMed  Google Scholar 

  101. Chauhan NB, Siegel GJ, Lee JM. Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain. J Chem Neuroanat. 2001;21:277–88.

    CAS  PubMed  Google Scholar 

  102. Knott C, Stern G, Kingsbury A, Welcher AA, Wilkin GP. Elevated glial brain-derived neurotrophic factor in Parkinson’s disease nigra. Parkinsonism Relat Disord. 2002;8:329–41.

    CAS  PubMed  Google Scholar 

  103. Gu G, Reyes PE, Golden GT, Woltjer RL, Hulette C, Montine TJ, et al. Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol. 2002;61:634–9.

    CAS  PubMed  Google Scholar 

  104. Winslow AR, Rubinsztein DC. The Parkinson disease protein alpha-synuclein inhibits autophagy. Autophagy. 2011;7:429–31.

    PubMed Central  PubMed  Google Scholar 

  105. Double KL, Reyes S, Werry EL, Halliday GM. Selective cell death in neurodegeneration: why are some neurons spared in vulnerable regions? Prog Neurobiol. 2010;92:316–29.

    CAS  PubMed  Google Scholar 

  106. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.

    PubMed  Google Scholar 

  107. McRitchie DA, Cartwright HR, Halliday GM. Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol. 1997;144:202–13.

    CAS  PubMed  Google Scholar 

  108. Matzuk MM, Saper CB. Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann Neurol. 1985;18:552–5.

    CAS  PubMed  Google Scholar 

  109. Fronczek R, Overeem S, Lee SY, Hegeman IM, van Pelt J, van Duinen SG, et al. Hypocretin (orexin) loss in Parkinson’s disease. Brain. 2007;130:1577–85.

    PubMed  Google Scholar 

  110. Thannickal TC, Lai YY, Siegel JM. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain. 2007;130:1586–95.

    PubMed  Google Scholar 

  111. Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron. 2011;71:35–48.

    CAS  PubMed  Google Scholar 

  112. Uchikado H, Lin WL, DeLucia MW, Dickson DW. Alzheimer disease with amygdala Lewy bodies: a distinct form of alpha-synucleinopathy. J Neuropathol Exp Neurol. 2006;65:685–97.

    CAS  PubMed  Google Scholar 

  113. Jellinger KA. Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol. 1991;14:153–97.

    CAS  PubMed  Google Scholar 

  114. Benarroch EE, Schmeichel AM, Low PA, Boeve BF, Sandroni P, Parisi JE. Involvement of medullary regions controlling sympathetic output in Lewy body disease. Brain. 2005;128:338–44.

    PubMed  Google Scholar 

  115. Benarroch EE, Schmeichel AM, Low PA, Parisi JE. Depletion of putative chemosensitive respiratory neurons in the ventral medullary surface in multiple system atrophy. Brain. 2007;130:469–75.

    PubMed  Google Scholar 

  116. Grinberg LT, Rueb U, Alho AT, Heinsen H. Brainstem pathology and non-motor symptoms in PD. J Neurol Sci. 2010;289:81–8.

    PubMed  Google Scholar 

  117. Dickson DW, Fujishiro H, Orr C, DelleDonne A, Josephs KA, Frigerio R, et al. Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord. 2009;15 Suppl 3:S1–5.

    PubMed  Google Scholar 

  118. Silveira-Moriyama L, Holton JL, Kingsbury A, Ayling H, Petrie A, Sterlacci W, et al. Regional differences in the severity of Lewy body pathology across the olfactory cortex. Neurosci Lett. 2009;453:77–80.

    CAS  PubMed  Google Scholar 

  119. Tamura T, Yoshida M, Hashizume Y, Sobue G. Lewy body-related alpha-synucleinopathy in the spinal cord of cases with incidental Lewy body disease. Neuropathology. 2012;32:13–22.

    PubMed  Google Scholar 

  120. Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol. 2012;124:643–64.

    PubMed  Google Scholar 

  121. Djaldetti R, Lev N, Melamed E. Lesions outside the CNS in Parkinson’s disease. Mov Disord. 2009;24:793–800.

    PubMed  Google Scholar 

  122. Duda JE. Olfactory system pathology as a model of Lewy neurodegenerative disease. J Neurol Sci. 2010;289:49–54.

    CAS  PubMed  Google Scholar 

  123. Braak H, Rub U, Jansen Steur EN, Del Tredici K, de Vos RA. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology. 2005;64:1404–10.

    CAS  PubMed  Google Scholar 

  124. Amino T, Orimo S, Itoh Y, Takahashi A, Uchihara T, Mizusawa H. Profound cardiac sympathetic denervation occurs in Parkinson disease. Brain Pathol. 2005;15:29–34.

    PubMed  Google Scholar 

  125. Ghebremedhin E, Del Tredici K, Langston JW, Braak H. Diminished tyrosine hydroxylase immunoreactivity in the cardiac conduction system and myocardium in Parkinson’s disease: an anatomical study. Acta Neuropathol. 2009;118:777–84.

    CAS  PubMed  Google Scholar 

  126. Orimo S, Takahashi A, Uchihara T, Mori F, Kakita A, Wakabayashi K, et al. Degeneration of cardiac sympathetic nerve begins in the early disease process of Parkinson’s disease. Brain Pathol. 2007;17:24–30.

    CAS  PubMed  Google Scholar 

  127. Orimo S, Kanazawa T, Nakamura A, Uchihara T, Mori F, Kakita A, et al. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol. 2007;113:81–6.

    PubMed  Google Scholar 

  128. Archibald NK, Clarke MP, Mosimann UP, Burn DJ. The retina in Parkinson’s disease. Brain. 2009;132:1128–45.

    PubMed  Google Scholar 

  129. Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, et al. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol. 2009;117:613–34.

    PubMed Central  PubMed  Google Scholar 

  130. Annerino DM, Arshad S, Taylor GM, Adler CH, Beach TG, Greene JG. Parkinson’s disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol. 2012;124:665–80.

    PubMed Central  PubMed  Google Scholar 

  131. Beach TG, Adler CH, Sue LI, Peirce JB, Bachalakuri J, Dalsing-Hernandez JE, et al. Reduced striatal tyrosine hydroxylase in incidental Lewy body disease. Acta Neuropathol. 2008;115:445–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Frigerio R, Fujishiro H, Ahn TB, Josephs KA, Maraganore DM, DelleDonne A, et al. Incidental Lewy body disease: do some cases represent a preclinical stage of dementia with Lewy bodies? Neurobiol Aging. 2011;32:857–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Doppler K, Ebert s, Üçeyler N, Trenkwalder C, Ebentheuer J, Volkmann J, et al. Cutaneous neuropathy in Parkinson’s disease: a window into brain pathology. Acta Neuropathol 2014;128:99–109.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and alpha-synuclein’s prion-like behavior in Parkinson’s disease–is there a link? Mol Neurobiol. 2013;47:561–74.

    PubMed Central  PubMed  Google Scholar 

  135. Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, et al. Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann Neurol. 2012;72:517–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Lue L-F, Walker DG, Adler CH, Shill H, Tran H, Akiyama H, et al. Biochemical increase in phosphorylated a-synuclein precedes histopathology of Lewy-type synucleinopathies. Brain Pathol. 2012;22:745–56.

    CAS  PubMed  Google Scholar 

  137. Minguez-Castellanos A, Chamorro CE, Escamilla-Sevilla F, Ortega-Moreno A, Rebollo AC, Gomez-Rio M, et al. Do alpha-synuclein aggregates in autonomic plexuses predate Lewy body disorders?: a cohort study. Neurology. 2007;68:2012–8.

    CAS  PubMed  Google Scholar 

  138. Burke RE, Dauer WT, Vonsattel JP. A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol. 2008;64:485–91.

    PubMed Central  PubMed  Google Scholar 

  139. Kanazawa T, Adachi E, Orimo S, Nakamura A, Mizusawa H, Uchihara T. Pale neurites, premature alpha-synuclein aggregates with centripetal extension from axon collaterals. Brain Pathol. 2012;22:67–78.

    PubMed  Google Scholar 

  140. Dale GE, Probst A, Luthert P, Martin J, Anderton BH, Leigh PN. Relationships between Lewy bodies and pale bodies in Parkinson’s disease. Acta Neuropathol. 1992;83:525–9.

    CAS  PubMed  Google Scholar 

  141. Katsuse O, Iseki E, Marui W, Kosaka K. Developmental stages of cortical Lewy bodies and their relation to axonal transport blockage in brains of patients with dementia with Lewy bodies. J Neurol Sci. 2003;211:29–35.

    CAS  PubMed  Google Scholar 

  142. Lundblad M, Decressac M, Mattsson B, Bjorklund A. Impaired neurotransmission caused by overexpression of alpha-synuclein in nigral dopamine neurons. Proc Natl Acad Sci U S A. 2012;109:3213–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Garcia-Reitböck P, Anichtchik O, Bellucci A, Iovino M, Ballini C, Fineberg E, et al. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain 2010;133:2032–44.

    PubMed Central  PubMed  Google Scholar 

  144. Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci. 2009;12:826–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Stoica G, Lungu G, Bjorklund NL, Taglialatela G, Zhang X, Chiu V, et al. Potential role of alpha-synuclein in neurodegeneration: studies in a rat animal model. J Neurochem. 2012;122:812–22.

    CAS  PubMed  Google Scholar 

  146. Nakata Y, Yasuda T, Fukaya M, Yamamori S, Itakura M, Nihira T, et al. Accumulation of alpha-synuclein triggered by presynaptic dysfunction. J Neurosci 2012;32:17186–96.

    CAS  PubMed  Google Scholar 

  147. Milber JM, Noorigian JV, Morley JF, Petrovitch H, White L, Ross GW, et al. Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology. 2012;79:2307–14.

    PubMed Central  PubMed  Google Scholar 

  148. Bellucci A, Zaltieri M, Navarria L, Grigoletto J, Missale C, Spano P. From alpha-synuclein to synaptic dysfunctions: new insights into the pathophysiology of Parkinson’s disease. Brain Res. 2012;1476:183–202.

    CAS  PubMed  Google Scholar 

  149. Mori F, Nishie M, Kakita A, Yoshimoto M, Takahashi H, Wakabayashi K. Relationship among alpha-synuclein accumulation, dopamine synthesis, and neurodegeneration in Parkinson disease substantia nigra. J Neuropathol Exp Neurol. 2006;65:808–15.

    CAS  PubMed  Google Scholar 

  150. Sidhu A, Wersinger C, Vernier P. Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J. 2004;18:637–47.

    CAS  PubMed  Google Scholar 

  151. Tong J, Wong H, Guttman M, Ang LC, Forno LS, Shimadzu M, et al. Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain. 2010;133:172–88.

    PubMed  Google Scholar 

  152. Wills J, Jones J, Haggerty T, Duka V, Joyce JN, Sidhu A. Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp Neurol. 2010;225:210–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Quinn JG, Coulson DT, Brockbank S, Beyer N, Ravid R, Hellemans J, et al. Alpha-synuclein mRNA and soluble alpha-synuclein protein levels in post-mortem brain from patients with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. Brain Res. 2012;1459:71–80.

    CAS  PubMed  Google Scholar 

  154. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.

    CAS  PubMed  Google Scholar 

  155. Beyer K, Ariza A. Alpha-synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration. Mol Neurobiol. 2013;47:509–24.

    CAS  PubMed  Google Scholar 

  156. Kuusisto E, Parkkinen L, Alafuzoff I. Morphogenesis of Lewy bodies: dissimilar incorporation of alpha-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol. 2003;62:1241–53.

    CAS  PubMed  Google Scholar 

  157. Walker DG, Lue LF, Adler CH, Shill HA, Caviness JN, Sabbagh MN, et al. Changes in properties of serine 129 phosphorylated alpha-synuclein with progression of Lewy-type histopathology in human brains. Exp Neurol 2013;240:190–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Wilhelmus MM, Verhaar R, Andringa G, Bol JG, Cras P, Shan L, et al. Presence of tissue transglutaminase in granular endoplasmic reticulum is characteristic of melanized neurons in Parkinson’s disease brain. Brain Pathol. 2011;21:130–9.

    CAS  PubMed  Google Scholar 

  159. Nath S, Goodwin J, Engelborghs Y, Pountney DL. Raised calcium promotes alpha-synuclein aggregate formation. Mol Cell Neurosci. 2011;46:516–26.

    CAS  PubMed  Google Scholar 

  160. Izumi Y, Kume T, Akaike A. Regulation of dopaminergic neuronal death by endogenous dopamine and proteasome activity. Yakugaku Zasshi. 2011;131:21–7.

    CAS  PubMed  Google Scholar 

  161. Halliday G, Hely M, Reid W, Morris J. The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol. 2008;115:409–15.

    PubMed  Google Scholar 

  162. Sugeno N, Takeda A, Hasegawa T, Kobayashi M, Kikuchi A, Mori F, et al. Serine 129 phosphorylation of alpha-synuclein induces unfolded protein response-mediated cell death. J Biol Chem. 2008;283:23179–88.

    CAS  PubMed  Google Scholar 

  163. Greffard S, Verny M, Bonnet AM, Beinis JY, Gallinari C, Meaume S, et al. Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Arch Neurol. 2006;63:584–8.

    PubMed  Google Scholar 

  164. Sossi V, de la Fuente-Fernandez R, Schulzer M, Troiano AR, Ruth TJ, Stoessl AJ. Dopamine transporter relation to dopamine turnover in Parkinson’s disease: a positron emission tomography study. Ann Neurol. 2007;62:468–74.

    PubMed  Google Scholar 

  165. Ballard C, Ziabreva I, Perry R, Larsen JP, O’Brien J, McKeith I, et al. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology. 2006;67:1931–4.

    CAS  PubMed  Google Scholar 

  166. Halliday GM, McCann H. The progression of pathology in Parkinson’s disease. Ann N Y Acad Sci. 2010;1184:188–95.

    PubMed  Google Scholar 

  167. Kempster PA, Williams DR, Selikhova M, Holton J, Revesz T, Lees AJ. Patterns of levodopa response in Parkinson’s disease: a clinico-pathological study. Brain. 2007;130:2123–8.

    CAS  PubMed  Google Scholar 

  168. Chu Y, Kordower JH. Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson’s disease? Neurobiol Dis. 2007;25:134–49.

    CAS  PubMed  Google Scholar 

  169. Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol. 1996;55:259–72.

    CAS  PubMed  Google Scholar 

  170. Ishiyama M, Yagishita S, Hasegawa K, Yokoyama T. Ultrastructural study (tEM and sEM) of cortical Lewy bodies. Neuropathol. 2006;26:A58.

    Google Scholar 

  171. Walker DG, Lue LF, Adler CH, Shill HA, Caviness JN, Sabbagh MN, et al. Changes in properties of serine 129 phosphorylated alpha-synuclein with progression of Lewy-type histopathology in human brains. Exp Neurol. 2013;240:190–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Ince PG, Clark B, Holton JL, Revesz T, Wharton SB. Disorders of movement and system degeneration. In: Love S, Louis DN, Ellison DW, editors. Greenfield’s neuropathology. 8th ed. London: Hodder Arnold; 2008. p. 889–1030.

    Google Scholar 

  173. Waxman EA, Duda JE, Giasson BI. Characterization of antibodies that selectively detect alpha-synuclein in pathological inclusions. Acta Neuropathol. 2008;116:37–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Sharma N, Hewett J, Ozelius LJ, Ramesh V, McLean PJ, Breakefield XO, et al. A close association of torsinA and alpha-synuclein in Lewy bodies: a fluorescence resonance energy transfer study. Am J Pathol. 2001;159:339–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Banerjee R, Starkov AA, Beal MF, Thomas B. Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim Biophys Acta. 2009;1792:651–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Dugger BN, Dickson DW. Cell type specific sequestration of choline acetyltransferase and tyrosine hydroxylase within Lewy bodies. Acta Neuropathol. 2010;120:633–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Dugger BN, Murray ME, Boeve BF, Parisi JE, Benarroch EE, Ferman TJ, et al. Neuropathological analysis of brainstem cholinergic and catecholaminergic nuclei in relation to rapid eye movement (REM) sleep behaviour disorder. Neuropathol Appl Neurobiol. 2012;38:142–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Dugger BN, Serrano GE, Sue LI, Walker DG, Adler CH, Shill HA, et al. Presence of striatal amyloid plaques in Parkinson’s disease dementia predicts concomitant Alzheimer’s disease: usefulness for amyloid imaging. J Parkinsons Dis. 2012;2:57–65.

    PubMed Central  PubMed  Google Scholar 

  179. Odagiri S, Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K. Autophagic adapter protein NBR1 is localized in Lewy bodies and glial cytoplasmic inclusions and is involved in aggregate formation in alpha-synucleinopathy. Acta Neuropathol. 2012;124:173–86.

    CAS  PubMed  Google Scholar 

  180. Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Forno L, et al. Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol. 2002;160:1655–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Sulzer D. Clues to how alpha-synuclein damages neurons in Parkinson’s disease. Mov Disord. 2010;25 Suppl 1:S27–31.

    PubMed  Google Scholar 

  182. Leverenz JB, Umar I, Wang Q, Montine TJ, McMillan PJ, Tsuang DW, et al. Proteomic identification of novel proteins in cortical Lewy bodies. Brain Pathol. 2007;17:139–45.

    CAS  PubMed  Google Scholar 

  183. Proteomic analysis of the substantia nigra in patients with Parkinson’s disease. In: Abstracts of the movement disorder society’s thirteenth international congress of Parkinson’s disease and movement disorders. June 8–10, 2009. Mov Disord 2009; 24 Suppl 1: S39.

    Google Scholar 

  184. van Dijk KD, Berendse HW, Drukarch B, Fratantoni SA, Pham TV, Piersma SR, et al. The proteome of the locus ceruleus in Parkinson’s disease: relevance to pathogenesis. Brain Pathol. 2012;22:485–98.

    PubMed  Google Scholar 

  185. Kovacs GG, Wagner U, Dumont B, Pikkarainen M, Osman AA, Streichenberger N, et al. An antibody with high reactivity for disease-associated alpha-synuclein reveals extensive brain pathology. Acta Neuropathol. 2012;124:37–50.

    CAS  PubMed  Google Scholar 

  186. Power JH, Blumbergs PC. Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol. 2009;117:63–73.

    CAS  PubMed  Google Scholar 

  187. Kanazawa T, Uchihara T, Takahashi A, Nakamura A, Orimo S, Mizusawa H. Three-layered structure shared between Lewy bodies and Lewy neurites – three-dimensional reconstruction of triple-labeled sections. Brain Pathol. 2008;18:415–22.

    PubMed  Google Scholar 

  188. Ugrumov MV. Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J Chem Neuroanat. 2009;38:241–56.

    CAS  PubMed  Google Scholar 

  189. Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord. 2011;26:6–17.

    PubMed  Google Scholar 

  190. Hishikawa N, Hashizume Y, Yoshida M, Sobue G. Widespread occurrence of argyrophilic glial inclusions in Parkinson’s disease. Neuropathol Appl Neurobiol. 2001;27:362–72.

    CAS  PubMed  Google Scholar 

  191. Beach TG, Walker DG, Sue LI, Newell A, Adler CC, Joyce JN. Substantia nigra Marinesco bodies are associated with decreased striatal expression of dopaminergic markers. J Neuropathol Exp Neurol. 2004;63:329–37.

    CAS  PubMed  Google Scholar 

  192. Jellinger KA. Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med. 2010;14:457–87.

    CAS  PubMed  Google Scholar 

  193. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283:9089–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Ferrer I. Early involvement of the cerebral cortex in Parkinson’s disease: convergence of multiple metabolic defects. Prog Neurobiol. 2009;88:89–103.

    CAS  PubMed  Google Scholar 

  195. Mullin S, Schapira A. Alpha-synuclein and mitochondrial dysfunction in Parkinson’s disease. Mol Neurobiol. 2013;47:587–97.

    CAS  PubMed  Google Scholar 

  196. Breydo L, Wu JW, Uversky VN. Alpha-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta. 1822;2012:261–85.

    Google Scholar 

  197. Stefanis L. Alpha-synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a009399.

    PubMed Central  PubMed  Google Scholar 

  198. Wan OW, Chung KK. The role of alpha-synuclein oligomerization and aggregation in cellular and animal models of Parkinson’s disease. PLoS One. 2012;7:e38545.

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, et al. Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci. 2012;32:3306–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011;108:4194–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Gadad BS, Britton GB, Rao KS. Targeting oligomers in neurodegenerative disorders: lessons from alpha-synuclein, tau, and amyloid-beta peptide. J Alzheimers Dis. 2011;24 Suppl 2:223–32.

    CAS  PubMed  Google Scholar 

  202. Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE. Alpha-synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol. 2013;73:155–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Tashiro M, Kojima M, Kihara H, Kasai K, Kamiyoshihara T, Uéda K, et al. Characterization of fibrillation process of alpha-synuclein at the initial stage. Biochem Biophys Res Commun. 2008;369:910–4.

    CAS  PubMed  Google Scholar 

  204. Dimant H, Kalia SK, Kalia LV, Zhu LN, Kibuuka L, Ebrahimi-Fakhari D, et al. Direct detection of alpha synuclein oligomers in vivo. Acta Neuropathol Commun. 2013;1:1. doi:10.1186/2051-5960-1-6.

    Google Scholar 

  205. Yasuda T, Nakata Y, Mochizuki H. Alpha-synuclein and neuronal cell death. Mol Neurobiol. 2013;47:466–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7:279–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Xilouri M, Brekk OR, Stefanis L. Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol. 2013;47:537–51.

    CAS  PubMed  Google Scholar 

  208. Fujita Y, Ohama E, Takatama M, Al-Sarraj S, Okamoto K. Fragmentation of Golgi apparatus of nigral neurons with alpha-synuclein-positive inclusions in patients with Parkinson’s disease. Acta Neuropathol (Berl). 2006;112:261–5.

    CAS  Google Scholar 

  209. Muller SK, Bender A, Laub C, Högen T, Schlaudraff F, Liss B, et al. Lewy body pathology is associated with mitochondrial DNA damage in Parkinson’s disease. Neurobiol Aging. 2013;34:2231–3.

    PubMed  Google Scholar 

  210. Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del Tredici K. Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord. 2006;21:2042–51.

    PubMed  Google Scholar 

  211. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology. 2005;65:1863–72.

    CAS  PubMed  Google Scholar 

  212. Zaccai J, Brayne C, McKeith I, Matthews F, Ince PG. Patterns and stages of alpha-synucleinopathy: relevance in a population-based cohort. Neurology. 2008;70:1042–8.

    CAS  PubMed  Google Scholar 

  213. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318:121–34.

    PubMed  Google Scholar 

  214. Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012;8:329–39.

    CAS  PubMed  Google Scholar 

  215. Ferrer I, Martinez A, Blanco R, Dalfo E, Carmona M. Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson disease. J Neural Transm. 2011;118:821–39.

    PubMed  Google Scholar 

  216. Kosaka K, Tsuchiya K, Yoshimura M. Lewy body disease with and without dementia: a clinicopathological study of 35 cases. Clin Neuropathol. 1988;7:299–305.

    CAS  PubMed  Google Scholar 

  217. Dickson DW, Uchikado H, Fujishiro H, Tsuboi Y. Evidence in favor of Braak staging of Parkinson’s disease. Mov Disord. 2010;25 Suppl 1:S78–82.

    PubMed  Google Scholar 

  218. Halliday GM, Del Tredici K, Braak H. Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson’s disease. J Neural Transm Suppl. 2006;70:99–103.

    Google Scholar 

  219. Kempster PA, O’Sullivan SS, Holton JL, Revesz T, Lees AJ. Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain. 2010;133:1755–62.

    PubMed  Google Scholar 

  220. Muller CM, de Vos RA, Maurage CA, Thal DR, Tolnay M, Braak H. Staging of sporadic Parkinson disease-related alpha-synuclein pathology: inter- and intra-rater reliability. J Neuropathol Exp Neurol. 2005;64:623–8.

    PubMed  Google Scholar 

  221. Jellinger KA. A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim Biophys Acta. 2009;1792:730–40.

    CAS  PubMed  Google Scholar 

  222. Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK. Controversies over the staging of alpha-synuclein pathology in Parkinson’s disease. Acta Neuropathol. 2008;116:125–8. author reply 129–31.

    PubMed  Google Scholar 

  223. Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease: a critical analysis of alpha-synuclein staging. Neuropathol Appl Neurobiol. 2008;34:284–95.

    CAS  PubMed  Google Scholar 

  224. Parkkinen L, Pirttila T, Alafuzoff I. Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol. 2008;115:399–407.

    PubMed Central  PubMed  Google Scholar 

  225. Leverenz JB, Hamilton R, Tsuang DW, Schantz A, Vavrek D, Larson EB, et al. Empiric refinement of the pathologic assessment of Lewy-related pathology in the dementia patient. Brain Pathol. 2008;18:220–4.

    PubMed Central  PubMed  Google Scholar 

  226. Mikolaenko I, Pletnikova O, Kawas CH, O’Brien R, Resnick SM, Crain B, et al. Alpha-synuclein lesions in normal aging, Parkinson disease, and Alzheimer disease: evidence from the Baltimore Longitudinal Study of Aging (BLSA). J Neuropathol Exp Neurol. 2005;64:156–62.

    CAS  PubMed  Google Scholar 

  227. Marui W, Iseki E, Kato M, Akatsu H, Kosaka K. Pathological entity of dementia with Lewy bodies and its differentiation from Alzheimer’s disease. Acta Neuropathol. 2004;108:121–8.

    PubMed  Google Scholar 

  228. Boeve BF, Dickson DW, Olson EJ, Shepard JW, Silber MH, Ferman TJ, et al. Insights into REM sleep behavior disorder pathophysiology in brainstem-predominant Lewy body disease. Sleep Med. 2007;8:60–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Frigerio R, Fujishiro H, Ahn TB, Josephs KA, Maraganore DM, Delledonne A, et al. Incidental Lewy body disease: Do some cases represent a preclinical stage of dementia with Lewy bodies? Neurobiol Aging 2011;32:857–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Claassen DO, Josephs KA, Ahlskog JE, Silber MH, Tippmann-Peikert M, Boeve BF. REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology. 2010;75:494–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Postuma RB, Gagnon JF, Vendette M, Desjardins C, Montplaisir JY. Olfaction and color vision identify impending neurodegeneration in rapid eye movement sleep behavior disorder. Ann Neurol. 2011;69:811–8.

    PubMed  Google Scholar 

  232. Jellinger KA. Lewy body-related alpha-synucleinopathy in the aged human brain. J Neural Transm. 2004;111:1219–35.

    CAS  PubMed  Google Scholar 

  233. Aho L, Parkkinen L, Pirttila T, Alafuzoff I. Systematic appraisal using immunohistochemistry of brain pathology in aged and demented subjects. Dement Geriatr Cogn Disord. 2008;25:423–32.

    CAS  PubMed  Google Scholar 

  234. Markesbery WR, Jicha GA, Liu H, Schmitt FA. Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol. 2009;68:816–22.

    PubMed Central  PubMed  Google Scholar 

  235. Parkkinen L, Soininen H, Alafuzoff I. Regional distribution of alpha-synuclein pathology in unimpaired aging and Alzheimer disease. J Neuropathol Exp Neurol. 2003;62:363–7.

    CAS  PubMed  Google Scholar 

  236. Saito Y, Ruberu NN, Sawabe M, Arai T, Kazama H, Hosoi T, et al. Lewy body-related alpha-synucleinopathy in aging. J Neuropathol Exp Neurol. 2004;63:742–9.

    PubMed  Google Scholar 

  237. Wakisaka Y, Furuta A, Tanizaki Y, Kiyohara Y, Iida M, Iwaki T. Age-associated prevalence and risk factors of Lewy body pathology in a general population: the Hisayama study. Acta Neuropathol. 2003;106:374–82.

    PubMed  Google Scholar 

  238. Ding ZT, Wang Y, Jiang YP, Hashizume Y, Yoshida M, Mimuro M, et al. Characteristics of alpha-synucleinopathy in centenarians. Acta Neuropathol. 2006;111:450–8.

    PubMed  Google Scholar 

  239. Fujishiro H, Tsuboi Y, Lin WL, Uchikado H, Dickson DW. Co-localization of tau and alpha-synuclein in the olfactory bulb in Alzheimer’s disease with amygdala Lewy bodies. Acta Neuropathol. 2008;116:17–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Parkkinen L, Pirttila T, Tervahauta M, Alafuzoff I. Widespread and abundant alpha-synuclein pathology in a neurologically unimpaired subject. Neuropathology. 2005;25:304–14.

    PubMed  Google Scholar 

  241. Jellinger KA. Interaction between alpha-synuclein and tau in Parkinson’s disease comment on Wills et al.: elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp Neurol 2010; 225: 210–218. Exp Neurol. 2011;227:13–8.

    CAS  PubMed  Google Scholar 

  242. Kovacs GG, Botond G, Budka H. Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol. 2010;119:389–408.

    CAS  PubMed  Google Scholar 

  243. Arai Y, Yamazaki M, Mori O, Muramatsu H, Asano G, Katayama Y. Alpha-synuclein-positive structures in cases with sporadic Alzheimer’s disease: morphology and its relationship to tau aggregation. Brain Res. 2001;888:287–96.

    CAS  PubMed  Google Scholar 

  244. Iseki E, Togo T, Suzuki K, Katsuse O, Marui W, de Silva R, et al. Dementia with Lewy bodies from the perspective of tauopathy. Acta Neuropathol (Berl). 2003;105:265–70.

    CAS  Google Scholar 

  245. Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K. The role of alpha-synuclein in Parkinson’s disease: insights from animal models. Nat Rev Neurosci. 2003;4:727–38.

    CAS  PubMed  Google Scholar 

  246. Baum L, Seger R, Woodgett JR, Kawabata S, Maruyama K, Koyama M, et al. Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement. Brain Res Mol Brain Res. 1995;34:1–17.

    CAS  PubMed  Google Scholar 

  247. Kawakami F, Suzuki M, Shimada N, Kagiya G, Ohta E, Tamura K, et al. Stimulatory effect of alpha-synuclein on the tau-phosphorylation by GSK-3beta. FEBS J. 2011;278:4895–904.

    CAS  PubMed  Google Scholar 

  248. Duka T, Duka V, Joyce JN, Sidhu A. Alpha-synuclein contributes to GSK-3beta-catalyzed tau phosphorylation in Parkinson’s disease models. FASEB J. 2009;23:2820–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Kozikowski AP, Gaisina IN, Petukhov PA, Sridhar J, King LT, Blond SY, et al. Highly potent and specific GSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synuclein protein expression in a cellular model of Parkinson’s disease. ChemMedChem. 2006;1:256–66.

    CAS  PubMed  Google Scholar 

  250. Kaul T, Credle J, Haggerty T, Oaks AW, Masliah E, Sidhu A. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson’s disease. BMC Neurosci. 2011;12:79.

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Wills J, Credle J, Haggerty T, Lee JH, Oaks AW, Sidhu A. Tauopathic changes in the striatum of A53T alpha-synuclein mutant mouse model of Parkinson’s disease. PLoS One. 2011;6:e17953.

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Qureshi HY, Paudel HK. Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and alpha-synuclein mutations promote tau protein phosphorylation at ser262 and destabilize microtubule cytoskeleton in vitro. J Biol Chem. 2011;286:5055–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Waxman EA, Giasson BI. Induction of intracellular tau aggregation is promoted by alpha-synuclein seeds and provides novel insights into the hyperphosphorylation of tau. J Neurosci. 2011;31:7604–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Badiola N, de Oliveira RM, Herrera F, Guardia-Laguarta C, Gonçalves SA, Pera M, et al. Tau enhances a-synuclein aggregation and toxicity in cellular models of synucleinopathy. PLoS One. 2011;6:e26609. doi:10.1371/journal.pone.0026609.

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, et al. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science. 2003;300:636–40.

    CAS  PubMed  Google Scholar 

  256. Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush AI. Tau protein: relevance to Parkinson’s disease. Int J Biochem Cell Biol. 2010;42:1775–8.

    CAS  PubMed  Google Scholar 

  257. Kotzbauer PT, Giasson BI, Kravitz AV, Golbe LI, Mark MH, Trojanowski JQ, et al. Fibrillization of alpha-synuclein and tau in familial Parkinson’s disease caused by the A53T alpha-synuclein mutation. Exp Neurol. 2004;187:279–88.

    CAS  PubMed  Google Scholar 

  258. Emmer KL, Waxman EA, Covy JP, Giasson BI. E46K human alpha-synuclein transgenic mice develop Lewy-like and tau pathology associated with age-dependent detrimental motor impairments. J Biol Chem. 2011;286:35104–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Toledo JB, Korff A, Shaw LM, Trojanowski JQ, Zhang J. Alpha-Synuclein improves diagnostic and prognostic performance of tau and A-beta in Alzheimer’s disease. Acta Neuropathol. 2013. doi:10.1007/s00401-013-1148-z.

    Google Scholar 

  260. Pletnikova O, West N, Lee MK, Rudow GL, Skolasky RL, Dawson TM, et al. Abeta deposition is associated with enhanced cortical alpha-synuclein lesions in Lewy body diseases. Neurobiol Aging. 2005;26:1183–92.

    CAS  PubMed  Google Scholar 

  261. Huang HC, Jiang ZF. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis. 2009;16:15–27.

    CAS  PubMed  Google Scholar 

  262. Lashley T, Holton JL, Gray E, Kirkham K, O’Sullivan SS, Hilbig A, et al. Cortical alpha-synuclein load is associated with amyloid-beta plaque burden in a subset of Parkinson’s disease patients. Acta Neuropathol. 2008;115:417–25.

    CAS  PubMed  Google Scholar 

  263. Bate C, Gentleman S, Williams A. Alpha-synuclein induced synapse damage is enhanced by amyloid-beta1-42. Mol Neurodegener. 2010;5:55.

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Obi K, Akiyama H, Kondo H, Shimomura Y, Hasegawa M, Iwatsubo T, et al. Relationship of phosphorylated alpha-synuclein and tau accumulation to Abeta deposition in the cerebral cortex of dementia with Lewy bodies. Exp Neurol. 2008;210:409–20.

    CAS  PubMed  Google Scholar 

  265. Mandal PK, Pettegrew JW, Masliah E, Hamilton RL, Mandal R. Interaction between Abeta peptide and alpha synuclein: molecular mechanisms in overlapping pathology of Alzheimer’s and Parkinson’s in dementia with Lewy body disease. Neurochem Res. 2006;31:1153–62.

    CAS  PubMed  Google Scholar 

  266. Takahashi RH, Capetillo-Zarate E, Lin MT, Milner TA, Gouras GK. Co-occurrence of Alzheimer’s disease ss-amyloid and tau pathologies at synapses. Neurobiol Aging 2010;31:1145–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A. 2009;106:20057–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  268. Obeso JA, Lanciego JL. Past, present, and future of the pathophysiological model of the Basal Ganglia. Front Neuroanat 2011;5:39.

    PubMed Central  PubMed  Google Scholar 

  269. Calabresi P, Mercuri NB, Di Filippo M. Synaptic plasticity, dopamine and Parkinson’s disease: one step ahead. Brain. 2009;132:285–7.

    PubMed  Google Scholar 

  270. Bagetta V, Ghiglieri V, Sgobio C, Calabresi P, Picconi B. Synaptic dysfunction in Parkinson’s disease. Biochem Soc Trans. 2010;38:493–7.

    CAS  PubMed  Google Scholar 

  271. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136:696–709.

    PubMed  Google Scholar 

  272. Jellinger KA. Post mortem studies in Parkinson’s disease – is it possible to detect brain areas for specific symptoms? J Neural Transm Suppl. 1999;56:1–29.

    CAS  PubMed  Google Scholar 

  273. Zaja-Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A, et al. Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology. 2005;64:545–7.

    CAS  PubMed  Google Scholar 

  274. Lee FJ, Wang YT, Liu F. Direct receptor cross-talk can mediate the modulation of excitatory and inhibitory neurotransmission by dopamine. J Mol Neurosci. 2005;26:245–52.

    CAS  PubMed  Google Scholar 

  275. West AR, Grace AA. Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci. 2002;22:294–304.

    CAS  PubMed  Google Scholar 

  276. Reetz K, Gaser C, Klein C, Hagenah J, Büchel C, Gottschalk S, et al. Structural findings in the basal ganglia in genetically determined and idiopathic Parkinson’s disease. Mov Disord. 2009;24:99–103.

    PubMed  Google Scholar 

  277. Mori F, Tanji K, Zhang H, Kakita A, Takahashi H, Wakabayashi K. Alpha-synuclein pathology in the neostriatum in Parkinson’s disease. Acta Neuropathol. 2008;115:453–9.

    CAS  PubMed  Google Scholar 

  278. Wichmann T, DeLong MR, Guridi J, Obeso JA. Milestones in research on the pathophysiology of Parkinson’s disease. Mov Disord. 2011;26:1032–41.

    PubMed  Google Scholar 

  279. Duda JE, Giasson BI, Mabon ME, Lee VM, Trojanowski JQ. Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann Neurol. 2002;52:205–10.

    CAS  PubMed  Google Scholar 

  280. Deutch AY, Colbran RJ, Winder DJ. Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism. Parkinsonism Relat Disord. 2007;13 Suppl 3:S251–8.

    PubMed  Google Scholar 

  281. Ito H, Kusaka H, Matsumoto S, Imai T. Striatal efferent involvement and its correlation to levodopa efficacy in patients with multiple system atrophy. Neurology. 1996;47:1291–9.

    CAS  PubMed  Google Scholar 

  282. Baradaran N, Tan SN, Liu A, Ashoori A, Palmer SJ, Wang ZJ, et al. Parkinson’s disease rigidity: relation to brain connectivity and motor performance. Front Neurol. 2013;4:67.

    PubMed Central  PubMed  Google Scholar 

  283. Picconi B, Paille V, Ghiglieri V, Bagetta V, Barone I, Lindgren HS, et al. L-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiol Dis. 2008;29:327–35.

    CAS  PubMed  Google Scholar 

  284. Ding Y, Won L, Britt JP, Lim SA, McGehee DS, Kang UJ. Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in Parkinsonian mice. Proc Natl Acad Sci U S A. 2011;108:840–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  285. Lee J, Zhu WM, Stanic D, Finkelstein DI, Horne MH, Henderson J, et al. Sprouting of dopamine terminals and altered dopamine release and uptake in Parkinsonian dyskinaesia. Brain. 2008;131:1574–87.

    PubMed  Google Scholar 

  286. Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain. 2011;134:979–86.

    PubMed  Google Scholar 

  287. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol. 2010;9:1106–17.

    CAS  PubMed  Google Scholar 

  288. Paulus W, Jellinger K. The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol. 1991;50:743–55.

    CAS  PubMed  Google Scholar 

  289. Elias S, Israel Z, Bergman H. Physiology of Parkinson’s disease. In: Hallett M, Poewe W, editors. Therapeutics of Parkinson’s disease and other movement disorders. Chichester: Wiley-Blackwell; 2008. p. 25–36.

    Google Scholar 

  290. Benninger DH, Thees S, Kollias SS, Bassetti CL, Waldvogel D. Morphological differences in Parkinson’s disease with and without rest tremor. J Neurol. 2009;256:256–63.

    PubMed  Google Scholar 

  291. Ni Z, Pinto AD, Lang AE, Chen R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol. 2010;68:816–24.

    PubMed  Google Scholar 

  292. Helmich RC, Janssen MJ, Oyen WJ, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69:269–81.

    PubMed  Google Scholar 

  293. Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of Parkinsonian resting tremor: a tale of two circuits? Brain. 2012;135:3206–26.

    PubMed Central  PubMed  Google Scholar 

  294. Mure H, Hirano S, Tang CC, Isaias IU, Antonini A, Ma Y, et al. Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage. 2011;54:1244–53.

    PubMed Central  PubMed  Google Scholar 

  295. Volkmann J. Surgery Parkinson’s disease. In: Hallett M, Poewe W, editors. Therapeutics of Parkinson’s disease and other movement disorders. Oxford: Wiley-Blackwell; 2008. p. 120–43.

    Google Scholar 

  296. Desouza RM, Moro E, Lang AE, Schapira AH. Timing of deep brain stimulation in Parkinson disease: a need for reappraisal? Ann Neurol. 2013;73:565–75.

    PubMed Central  PubMed  Google Scholar 

  297. Hallett M, Deuschl G. Are we making progress in the understanding of tremor in Parkinson’s disease? Ann Neurol. 2010;68:780–1.

    PubMed Central  PubMed  Google Scholar 

  298. Eggers C, Kahraman D, Fink GR, Schmidt M, Timmermann L. Akinetic-rigid and tremor-dominant Parkinson’s disease patients show different patterns of FP-CIT SPECT. Basal Ganglia. 2011;1:34.

    Google Scholar 

  299. Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol. 2010;9:1200–13.

    PubMed  Google Scholar 

  300. Aarsland D, Bronnick K, Larsen JP, Tysnes OB, Alves G. Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology. 2009;72:1121–6.

    CAS  PubMed  Google Scholar 

  301. Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75:1062–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  302. Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson’s disease. Brain Pathol. 2010;20:633–9.

    PubMed  Google Scholar 

  303. Hely MA, Morris JG, Reid WG, Trafficante R. Sydney Multicenter Study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord. 2005;20:190–9.

    PubMed  Google Scholar 

  304. Kalaitzakis ME, Pearce RK. The morbid anatomy of dementia in Parkinson’s disease. Acta Neuropathol. 2009;118:587–98.

    CAS  PubMed  Google Scholar 

  305. Compta Y, Parkkinen L, O’Sullivan SS, Vandrovcova J, Holton JL, Collins C, et al. Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain. 2011;134:1493–505.

    PubMed  Google Scholar 

  306. Dickson D, Orr C, Murray M, Pahwa R, Lyons K, Goldman S, et al. Hierarchical cluster analysis of cortical pathology suggests pathologic heterogeneity of dementia in Parkinson’s disease (abs). J Neuropathol Exp Neurol. 2011;70:505.

    Google Scholar 

  307. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66:1447–55.

    PubMed Central  PubMed  Google Scholar 

  308. Caviness JN, Driver-Dunckley E, Connor DJ, Sabbagh MN, Hentz JG, Noble B, et al. Defining mild cognitive impairment in Parkinson’s disease. Mov Disord. 2007;22:1272–7.

    PubMed  Google Scholar 

  309. Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain. 2007;130:1787–98.

    CAS  PubMed  Google Scholar 

  310. Dalrymple-Alford JC, Livingston L, MacAskill MR, Graham C, Melzer TR, Porter RJ, et al. Characterizing mild cognitive impairment in Parkinson’s disease. Mov Disord. 2011;26:629–36.

    PubMed  Google Scholar 

  311. Adler CH, Caviness JN, Sabbagh MN, Shill HA, Connor DJ, Sue L, et al. Heterogeneous neuropathological findings in Parkinson’s disease with mild cognitive impairment. Acta Neuropathol. 2010;120:827–8.

    PubMed Central  PubMed  Google Scholar 

  312. Jellinger KA. Neuropathology in Parkinson’s disease with mild cognitive impairment. Acta Neuropathol. 2010;120:829–30.

    PubMed  Google Scholar 

  313. McKinlay A, Grace RC, Dalrymple-Alford JC, Roger D. Cognitive characteristics associated with mild cognitive impairment in Parkinson’s disease. Dement Geriatr Cogn Disord. 2009;28:121–9.

    CAS  PubMed  Google Scholar 

  314. Petersen RC, Parisi JE, Dickson DW, Johnson KA, Knopman DS, Boeve BF, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol. 2006;63:665–72.

    PubMed  Google Scholar 

  315. Markesbery WR. Neuropathologic alterations in mild cognitive impairment: a review. J Alzheimers Dis. 2010;19:221–8.

    PubMed Central  PubMed  Google Scholar 

  316. Silbert LC, Kaye J. Neuroimaging and cognition in Parkinson’s disease dementia. Brain Pathol. 2010;20:646–53.

    PubMed Central  PubMed  Google Scholar 

  317. Burack MA, Hartlein J, Flores HP, Taylor-Reinwald L, Perlmutter JS, Cairns NJ. In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia. Neurology. 2010;74:77–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  318. Evans JR, Revesz T, Barker RA. Lesions associated with cognitive impairment and dementia. In: Halliday G, Barker RA, Rowe DB, editors. Non-dopamine lesions in Parkinson’s disease. Oxford: Oxford University Press; 2011. p. 261–87.

    Google Scholar 

  319. Bouchard TP, Malykhin N, Martin WR, Hanstock CC, Emery DJ, Fisher NJ, et al. Age and dementia-associated atrophy predominates in the hippocampal head and amygdala in Parkinson’s disease. Neurobiol Aging. 2008;29:1027–39.

    PubMed  Google Scholar 

  320. Fujita M, Ichise M, Zoghbi SS, Liow JS, Ghose S, Vines DC, et al. Widespread decrease of nicotinic acetylcholine receptors in Parkinson’s disease. Ann Neurol. 2006;59:174–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  321. Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 2008;70:1470–7.

    CAS  PubMed  Google Scholar 

  322. Jellinger KA. Morphological substrates of dementia in parkinsonism. A critical update. J Neural Transm Suppl. 1997;51:57–82.

    CAS  PubMed  Google Scholar 

  323. Del Tredici K, Braak H. Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson’s disease-related dementia. J Neurol Neurosurg Psychiatry. 2013;84:774–83.

    PubMed  Google Scholar 

  324. Zweig RM, Cardillo JE, Cohen M, Giere S, Hedreen JC. The locus ceruleus and dementia in Parkinson’s disease. Neurology. 1993;43:986–91.

    CAS  PubMed  Google Scholar 

  325. McMillan PJ, White SS, Franklin A, Greenup JL, Leverenz JB, Raskind MA, et al. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson’s disease and Alzheimer’s disease. Brain Res. 2011;1373:240–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  326. Aarsland D, Londos E, Ballard C. Parkinson’s disease dementia and dementia with Lewy bodies: different aspects of one entity. Int Psychogeriatr. 2009;21:216–9.

    PubMed  Google Scholar 

  327. Kraybill ML, Larson EB, Tsuang DW, Teri L, McCormick WC, Bowen JD, et al. Cognitive differences in dementia patients with autopsy-verified AD, Lewy body pathology, or both. Neurology. 2005;64:2069–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  328. Kantarci K, Lowe VJ, Boeve BF, Weigand SD, Senjem ML, Przybelski SA, et al. Multimodality imaging characteristics of dementia with Lewy bodies. Neurobiol Aging. 2012;33:2091–105.

    PubMed Central  PubMed  Google Scholar 

  329. Alafuzoff I, Ince PG, Arzberger T, Al-Sarraj S, Bell J, Bodi I, et al. Staging/typing of Lewy body related alpha-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol. 2009;117:635–52.

    CAS  PubMed  Google Scholar 

  330. Kotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, et al. Pathologic accumulation of alpha-synuclein and A-beta in Parkinson disease patients with dementia. Arch Neurol. 2012;69:1326–31.

    PubMed Central  PubMed  Google Scholar 

  331. Tsuang D, Leverenz JB, Lopez OL, Hamilton RL, Bennett DA, Schneider JA, et al. APOE epsilon4 increases risk for dementia in pure synucleinopathies. JAMA Neurol. 2013;70:223–8.

    PubMed Central  PubMed  Google Scholar 

  332. Fujishiro H, Iseki E, Higashi S, Kasanuki K, Murayama N, Togo T, et al. Distribution of cerebral amyloid deposition and its relevance to clinical phenotype in Lewy body dementia. Neurosci Lett. 2010;486:19–23.

    CAS  PubMed  Google Scholar 

  333. Halliday GM, Song YJ, Harding AJ. Striatal beta-amyloid in dementia with Lewy bodies but not Parkinson’s disease. J Neural Transm. 2011;118:713.

    CAS  PubMed  Google Scholar 

  334. Piggott MA, Perry EK, Marshall EF, McKeith IG, Johnson M, Melrose HL, et al. Nigrostriatal dopaminergic activities in dementia with Lewy bodies in relation to neuroleptic sensitivity: comparisons with Parkinson’s disease. Biol Psychiatry. 1998;44:765–74.

    CAS  PubMed  Google Scholar 

  335. Francis PT, Perry EK. Cholinergic and other neurotransmitter mechanisms in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Mov Disord. 2007;22 Suppl 17:S351–7.

    PubMed  Google Scholar 

  336. Hurtig HI, Trojanowski JQ, Galvin J, Ewbank D, Schmidt ML, Lee VM, et al. Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology. 2000;54:1916–21.

    CAS  PubMed  Google Scholar 

  337. Apaydin H, Ahlskog JE, Parisi JE, Boeve BF, Dickson DW. Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response. Arch Neurol. 2002;59:102–12.

    PubMed  Google Scholar 

  338. Kovari E, Gold G, Herrmann FR, Canuto A, Hof PR, Bouras C, et al. Lewy body densities in the entorhinal and anterior cingulate cortex predict cognitive deficits in Parkinson’s disease. Acta Neuropathol (Berl). 2003;106:83–8.

    Google Scholar 

  339. Mattila PM, Rinne JO, Helenius H, Dickson DW, Roytta M. Alpha-Synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson’s disease. Acta Neuropathol. 2000;100:285–90.

    CAS  PubMed  Google Scholar 

  340. Mattila PM, Rinne JO, Helenius H, Roytta M. Neuritic degeneration in the hippocampus and amygdala in Parkinson’s disease in relation to Alzheimer pathology. Acta Neuropathol (Berl). 1999;98:157–64.

    CAS  Google Scholar 

  341. Harding AJ, Halliday GM. Simplified neuropathological diagnosis of dementia with Lewy bodies. Neuropathol Appl Neurobiol. 1998;24:195–201.

    CAS  PubMed  Google Scholar 

  342. Joelving FC, Billeskov R, Christensen JR, West M, Pakkenberg B. Hippocampal neuron and glial cell numbers in Parkinson’s disease – a stereological study. Hippocampus. 2006;16:826–33.

    CAS  PubMed  Google Scholar 

  343. Colosimo C, Hughes AJ, Kilford L, Lees AJ. Lewy body cortical involvement may not always predict dementia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2003;74:852–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  344. Libow LS, Frisina PG, Haroutunian V, Perl DP, Purohit DP. Parkinson’s disease dementia: a diminished role for the Lewy body. Parkinsonism Relat Disord. 2009;15:572–5.

    PubMed Central  PubMed  Google Scholar 

  345. Weisman D, Cho M, Taylor C, Adame A, Thal LJ, Hansen LA. In dementia with Lewy bodies, Braak stage determines phenotype, not Lewy body distribution. Neurology. 2007;69:356–9.

    CAS  PubMed  Google Scholar 

  346. Jellinger KA, Attems J. Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol. 2008;115:127–36.

    Google Scholar 

  347. Jendroska K, Lees AJ, Poewe W, Daniel SE. Amyloid beta-peptide and the dementia of Parkinson’s disease. Mov Disord. 1996;11:647–53.

    CAS  PubMed  Google Scholar 

  348. Mastaglia FL, Johnsen RD, Byrnes ML, Kakulas BA. Prevalence of amyloid-beta deposition in the cerebral cortex in Parkinson’s disease. Mov Disord. 2003;18:81–6.

    PubMed  Google Scholar 

  349. Edison P, Rowe CC, Rinne JO, Ng S, Ahmed I, Kemppainen N, et al. Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry. 2008;79:1331–8.

    CAS  PubMed  Google Scholar 

  350. Gomperts SN, Rentz DM, Moran E, Becker JA, Locascio JJ, Klunk WE, et al. Imaging amyloid deposition in Lewy body diseases. Neurology. 2008;71:903–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  351. Maetzler W, Reimold M, Liepelt I, Solbach C, Leyhe T, Schweitzer K, et al. [11C]PIB binding in Parkinson’s disease dementia. Neuroimage. 2008;39:1027–33.

    PubMed  Google Scholar 

  352. Ghebremedhin E, Rosenberger A, Rub U, Vuksic M, Berhe T, Bickeböller H, et al. Inverse relationship between cerebrovascular lesions and severity of Lewy body pathology in patients with Lewy body diseases. J Neuropathol Exp Neurol. 2010;69:442–8.

    PubMed  Google Scholar 

  353. Devine MJ, Gwinn K, Singleton A, Hardy J. Parkinson’s disease and alpha-synuclein expression. Mov Disord. 2011;26:2160–8.

    PubMed  Google Scholar 

  354. Pilsl A, Winklhofer KF. Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease. Acta Neuropathol. 2012;123:173–88.

    CAS  PubMed  Google Scholar 

  355. Sulzer D, Surmeier DJ. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov Disord. 2013;28:41–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  356. Schapira AH, Gegg M. Mitochondrial contribution to Parkinson’s disease pathogenesis. Parkinsons Dis. 2011;2011:159160.

    PubMed Central  PubMed  Google Scholar 

  357. Reynolds NP, Soragni A, Rabe M, Verdes D, Liverani E, Handschin S, et al. Mechanism of membrane interaction and disruption by alpha-synuclein. J Am Chem Soc. 2011;133:19366–75.

    CAS  PubMed  Google Scholar 

  358. Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, De Astis S, et al. LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci. 2011;31:2225–37.

    CAS  PubMed  Google Scholar 

  359. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011;147:893–906.

    CAS  PubMed Central  PubMed  Google Scholar 

  360. Cook C, Stetler C, Petrucelli L. Disruption of protein quality control in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a009423.

    PubMed Central  PubMed  Google Scholar 

  361. Tzoulis C, Tran GT, Schwarzlmuller T, Specht K, Haugarvoll K, Balafkan N et al. Severe nigrostriatal degeneration without clinical parkinsonism in patients with polymerase gamma mutations. Brain 2013;136:2393–404.

    PubMed  Google Scholar 

  362. Hurley MJ, Brandon B, Gentleman SM, Dexter DT. Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain. 2013;136:2077–97.

    PubMed  Google Scholar 

  363. Pan T, Kondo S, Le W, Jankovic J. The role of autophagy–lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain. 2008;131:1969–78.

    PubMed  Google Scholar 

  364. Janda E, Isidoro C, Carresi C, Mollace V. Defective autophagy in Parkinson’s disease: role of oxidative stress. Mol Neurobiol. 2012;46:639–61.

    CAS  PubMed  Google Scholar 

  365. Exner N, Lutz AK, Haass C, Winklhofer KF. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31:3038–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  366. Bueler H. Mitochondrial dynamics, cell death and the pathogenesis of Parkinson’s disease. Apoptosis. 2010;15:1336–53.

    PubMed  Google Scholar 

  367. Schon EA, Przedborski S. Mitochondria: the next (neurode)generation. Neuron. 2011;70:1033–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  368. Coskun P, Wyrembak J, Schriner SE, Chen HW, Marciniack C, Laferla F, et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta. 2012;1820:553–64.

    Google Scholar 

  369. Karbowski M, Neutzner A. Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol. 2012;123:157–71.

    CAS  PubMed  Google Scholar 

  370. McCoy MK, Cookson MR. Mitochondrial quality control and dynamics in Parkinson’s disease. Antioxid Redox Signal. 2012;16:869–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  371. Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26:1049–55.

    PubMed  Google Scholar 

  372. Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis. 2009;16:879–95.

    PubMed  Google Scholar 

  373. Angot E, Steiner JA, Lema Tome CM, Ekström P, Mattsson B, Björklund A, et al. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One. 2012;7:e39465.

    CAS  PubMed Central  PubMed  Google Scholar 

  374. Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2010;11:301–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  375. Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, Papadopoulou-Daifoti Z, et al. Boosting chaperone-mediated autophagy in vivo mitigates alpha-synuclein-induced neurodegeneration. Brain. 2013;136:2130–46.

    PubMed  Google Scholar 

  376. Tsang AH, Chung KK. Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta. 2009;1792:643–50.

    CAS  PubMed  Google Scholar 

  377. Huang Y, Chegini F, Chua G, Murphy K, Gai W, Halliday GM. Macroautophagy in sporadic and the genetic form of Parkinson’s disease with the A53T a-synuclein mutation. Translat Neurodeg. 2012;1:2. doi:10.1186/2047-9158-1-2.

    CAS  Google Scholar 

  378. Visanji NP, Brooks PL, Hazrati L-N, Lang AE. The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun. 2013;1:2. doi:10.1186/2051-5960-1-2.

    PubMed Central  PubMed  Google Scholar 

  379. Olanow CW, McNaught K. Parkinson’s disease, proteins, and prions: milestones. Mov Disord. 2011;26:1056–71.

    PubMed  Google Scholar 

  380. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener. 2012;7:42.

    CAS  PubMed Central  PubMed  Google Scholar 

  381. Marques O, Outeiro TF. Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis. 2012;3:e350.

    CAS  PubMed Central  PubMed  Google Scholar 

  382. Fellner L, Jellinger KA, Wenning GK, Stefanova N. Glial dysfunction in the pathogenesis of alpha-synucleinopathies: emerging concepts. Acta Neuropathol. 2011;121:675–93.

    CAS  PubMed  Google Scholar 

  383. Martin ZS, Neugebauer V, Dineley KT, Kayed R, Zhang W, Reese LC, et al. Alpha-synuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases. J Neurochem. 2012;120:440–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  384. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L. Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol. 2011;10:1015–25.

    CAS  PubMed  Google Scholar 

  385. Bove J, Perier C. Neurotoxin-based models of Parkinson’s disease. Neuroscience. 2012;211:51–76.

    CAS  PubMed  Google Scholar 

  386. Cannon JR, Greenamyre JT. Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog Brain Res. 2010;184:17–33.

    CAS  PubMed  Google Scholar 

  387. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect. 2011;119:866–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  388. Nistico R, Mehdawy B, Piccirilli S, Mercuri N. Paraquat- and rotenone-induced models of Parkinson’s disease. Int J Immunopathol Pharmacol. 2011;24:313–22.

    CAS  PubMed  Google Scholar 

  389. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66:646–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  390. Welchko RM, Leveque XT, Dunbar GL. Genetic rat models of Parkinson’s disease. Parkinsons Dis. 2012;2012:128356.

    PubMed Central  PubMed  Google Scholar 

  391. Alberio T, Lopiano L, Fasano M. Cellular models to investigate biochemical pathways in Parkinson’s disease. FEBS J. 2012;279:1146–55.

    CAS  PubMed  Google Scholar 

  392. Mizuno H, Fujikake N, Wada K, Nagai Y. Alpha-synuclein transgenic drosophila as a model of Parkinson’s disease and related synucleinopathies. Parkinsons Dis. 2010;2011:212706.

    PubMed Central  PubMed  Google Scholar 

  393. Whitworth AJ. Drosophila models of Parkinson’s disease. Adv Genet. 2011;73:1–50.

    CAS  PubMed  Google Scholar 

  394. Yao C, El Khoury R, Wang W, Byrd TA, Pehek EA, Thacker C, et al. LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson’s disease. Neurobiol Dis. 2010;40:73–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  395. Antony PM, Diederich NJ, Balling R. Parkinson’s disease mouse models in translational research. Mamm Genome. 2011;22:401–19.

    PubMed Central  PubMed  Google Scholar 

  396. Bezard E, Przedborski S. A tale on animal models of Parkinson’s disease. Mov Disord. 2011;26:993–1002.

    PubMed  Google Scholar 

  397. Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. Mov Disord. 2013;28:61–70. doi:10.1002/mds.25108.

    CAS  PubMed Central  PubMed  Google Scholar 

  398. Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol. 2012;2012:845618. doi:10.1155/2012/845618.

    PubMed Central  PubMed  Google Scholar 

  399. Chesselet MF, Richter F. Modelling of Parkinson’s disease in mice. Lancet Neurol. 2011;10:1108–18.

    PubMed  Google Scholar 

  400. Lim Y, Kehm VM, Lee EB, Soper JH, Li C, Trojanowski JQ, et al. alpha-Syn suppression reverses synaptic and memory defects in a mouse model of dementia with Lewy bodies. J Neurosci. 2011;31:10076–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  401. Low K, Aebischer P. Use of viral vectors to create animal models for Parkinson’s disease. Neurobiol Dis. 2012;48:189–201.

    PubMed  Google Scholar 

  402. Ulusoy A, Bjorklund T, Buck K, Kirik D. Dysregulated dopamine storage increases the vulnerability to alpha-synuclein in nigral neurons. Neurobiol Dis. 2012;47:367–77.

    CAS  PubMed  Google Scholar 

  403. Eschbach J, Danzer KM. α-Synuclein in Parkinson’s Disease: Pathogenic Function and Translation into Animal Models. Neurodegener Dis 2014;14:1–17.

    CAS  PubMed  Google Scholar 

  404. Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J. 2012;279:1156–66.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt A. Jellinger M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jellinger, K.A. (2014). Neuropathology of Parkinson’s Disease. In: Thomas, M. (eds) Inflammation in Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-08046-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08046-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08045-1

  • Online ISBN: 978-3-319-08046-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics