Skip to main content

Boundary Stabilization of Numerical Approximations of the 1-D Variable Coefficients Wave Equation: A Numerical Viscosity Approach

  • Chapter
  • First Online:
Optimization with PDE Constraints

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 101))

Abstract

In this paper, we consider the boundary stabilization problem associated to the 1 − d wave equation with both variable density and diffusion coefficients and to its finite difference semi-discretizations. It is well-known that, for the finite difference semi-discretization of the constant coefficients wave equation on uniform meshes (Tébou and Zuazua, Adv. Comput. Math. 26:337–365, 2007) or on some non-uniform meshes (Marica and Zuazua, BCAM, 2013, preprint), the discrete decay rate fails to be uniform with respect to the mesh-size parameter. We prove that, under suitable regularity assumptions on the coefficients and after adding an appropriate artificial viscosity to the numerical scheme, the decay rate is uniform as the mesh-size tends to zero. This extends previous results in Tébou and Zuazua (Adv. Comput. Math. 26:337–365, 2007) on the constant coefficient wave equation. The methodology of proof consists in applying the classical multiplier technique at the discrete level, with a multiplier adapted to the variable coefficients.

Mathematics Subject Classification (2010). Primary 49K40; Secondary 35L05

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024–1065 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Beckermann, S. Serra-Capizzano, On the asymptotic spectrum of finite element matrix sequences. SIAM J. Numer. Anal. 45, 746–769 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Castro, E. Zuazua, Concentration and lack of observability of waves in highly heterogeneous media. Arch. Ration. Mech. Anal. 164, 39–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Conrad, J. Leblond, J.-P. Marmorat, Boundary control and stabilization of the one-dimensional wave equation, in Boundary Control and Boundary Variation, Proceedings of IFIP WG 7.2 Conference, Sophia-Antipolis, France, 15–17 October 1990, ed. by J.P. Zolésio (1990), pp. 142–162

    Google Scholar 

  5. S. Cox, E. Zuazua, The rate at which the energy decays in a string damped at one end. Indiana Univ. Math. J. 44, 545–573 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Ervedoza, On the mixed finite element method for the 1 − d wave equation on non-uniform meshes. ESAIM COCV 2, 298–326 (2010)

    Article  MathSciNet  Google Scholar 

  7. S. Ervedoza, E. Zuazua, On the perfectly matched layers: energy decay for 1 − d continuous and semi-discrete waves. Numer. Math. 109, 597–634 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Ervedoza, E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91, 20–48 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Ervedoza, E. Zuazua, Uniform exponential decay for viscous damped systems, in Advances in Phase Space Analysis of Partial Differential Equations, Progress in Nonlinear Differential Equations and their Applications, vol. 78. (Birkhäuser Boston, 2009), pp. 95–112

    Google Scholar 

  10. S. Ervedoza, E. Zuazua, The wave equation: control and numerics, in Control and Stabilization of PDEs, eds. by P.M. Cannarsa, J.M. Coron. Lecture Notes in Mathematics, vol. 2048. (Springer, Berlin/Heidelberg/New York, 2012), pp. 245–339

    Google Scholar 

  11. S. Ervedoza, A. Marica, E. Zuazua, Uniform observability property for discrete waves on strictly concave non-uniform meshes: a multiplier approach (in preparation)

    Google Scholar 

  12. F. Fanelli, E. Zuazua, Weak observability estimates for 1-D wave equations with rough coefficients, to appear in Annales de l’Institut Henri Poincare (C) Non Linear Analysis

    Google Scholar 

  13. E. Fernández-Cara, E. Zuazua, On the null controllability of the one-dimensional heat equation with BV coefficients. Special issue in memory of Jacques-Louis Lions. Comput. Appl. Math. 21, 167–190 (2002)

    MATH  Google Scholar 

  14. S.V. Fomin, A.N. Kolmogorov, Introductory Real Analysis. (Dover Publications, New York, 1970)

    Google Scholar 

  15. R. Glowinski, C.H. Li, J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet controls: Description of the numerical methods. Jpn. J. Appl. Math. 7, 1–76 (1990)

    MathSciNet  MATH  Google Scholar 

  16. A. Haraux, A generalized internal control for the wave equation in a rectangle. J. Math. Anal. Appl. 153, 190–216 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Harley, Differentiation under the integral sign. Am. Math. Mon. 80, 615–627 (1973)

    Article  MATH  Google Scholar 

  18. V. Komornik, E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69, 33–54 (1990)

    MathSciNet  MATH  Google Scholar 

  19. J. Lagnese, Control of wave processes with distributed controls supported on a subregion. SIAM J. Cont. Optim. 21, 68–85 (1993)

    Article  MathSciNet  Google Scholar 

  20. J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, vol. 1. (Masson, Paris, 1988)

    Google Scholar 

  21. A. López, E. Zuazua, Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density. Ann. l’Institut Henri Poincare Anal Non Linéaire 19, 543–580 (2002)

    Article  MATH  Google Scholar 

  22. A. Marica, E. Zuazua, Propagation of 1 − d waves in regular discrete heterogeneous media: A Wigner measure approach. Accepted in FoCM - Foundations of Computational Mathematics

    Google Scholar 

  23. S. Micu, Uniform boundary controllability of a semi-discrete 1 − d wave equation with vanishing viscosity. SIAM J. Cont. Optim. 47, 2857–2885 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. R.T. Rockafellar, Convex Analysis. (Princeton University Press, Princeton, 1970)

    Google Scholar 

  25. L.R.T. Tébou, A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations. ESAIM COCV 14, 561–574 (2008)

    Article  MATH  Google Scholar 

  26. L.R.T. Tébou, E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1 − d wave equation. Adv. Comput. Math. 26, 337–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Vancostenoble, Stabilisation non monotone de systèmes vibrants et contrôlabilité, Ph.D. thesis, Université de Rennes I, 1998

    Google Scholar 

  28. E. Zuazua, An introduction to the exact controllability for distributed systems. Textos e Notas, vol. 44. C.M.A.F. (Universidades de Lisboa, Lisboa, 1990)

    Google Scholar 

  29. E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differ. Equ. 15, 205–235 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures Appl. 70, 513–529 (1991)

    MathSciNet  MATH  Google Scholar 

  31. E. Zuazua, Propagation, observation, control and numerical approximation of waves. SIAM Rev. 47, 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Advanced Grant NUMERIWAVES/FP7-246775 of the European Research Council Executive Agency, FA9550-14-1-0214 of the EOARD-AFOSR, MTM2011-29306-C02-00 and SEV-2013-0323 Grants of the MINECO Spain, the PI2010-04 Grant and the BERC 2014-2017 Program of the Basque Government. The details of this work were elaborated during the postdoc stay of the first author at Institute of Mathematics and Scientific Computing and University of Graz, funded by the MOBIS - Mathematical Optimization and Applications in Biomedical Sciences grant of the FWF - Austrian Science Fund. Additionally, the first author’s work was supported by two grants of the Romanian Ministry of National Education (CNCS-UEFISCDI), i.e., projects PN-II-ID-PCE-2012-4-0021 Variable Exponent Analysis: Partial Differential Equations and Calculus of Variations and PN-II-ID-PCE-2011-3-0075 Analysis, control and numerical approximations of PDEs. Both authors thank the CIMI - Toulouse for the hospitality and support during the preparation of this work in the context of the Excellence Chair in PDE, Control and Numerics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Marica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marica, A., Zuazua, E. (2014). Boundary Stabilization of Numerical Approximations of the 1-D Variable Coefficients Wave Equation: A Numerical Viscosity Approach. In: Hoppe, R. (eds) Optimization with PDE Constraints. Lecture Notes in Computational Science and Engineering, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-319-08025-3_9

Download citation

Publish with us

Policies and ethics