Skip to main content

Adaptive Finite Elements for Optimally Controlled Elliptic Variational Inequalities of Obstacle Type

  • Chapter
  • First Online:
Optimization with PDE Constraints

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 101))

Abstract

We are concerned with the numerical solution of distributed optimal control problems for second order elliptic variational inequalities by adaptive finite element methods. Both the continuous problem as well as its finite element approximations represent subclasses of Mathematical Programs with Equilibrium Constraints (MPECs) for which the optimality conditions are stated by means of stationarity concepts in function space (Hintermüller and Kopacka, SIAM J. Optim. 20:868–902, 2009) and in a discrete, finite dimensional setting (Scheel and Scholtes, Math. Oper. Res. 25:1–22, 2000) such as (\(\varepsilon\)-almost, almost) C- and S-stationarity. With regard to adaptive mesh refinement, in contrast to the work in (Hintermüller, ESAIM Control Optim. Calc. Var., 2012, submitted) which adopts a goal oriented dual weighted approach, we consider standard residual-type a posteriori error estimators. The first main result states that for a sequence of discrete C-stationary points there exists a subsequence converging to an almost C-stationary point, provided the associated sequence of nested finite element spaces is limit dense in its continuous counterpart. As the second main result, we prove the reliability and efficiency of the residual-type a posteriori error estimators. Particular emphasis is put on the approximation of the reliability and efficiency related consistency errors by heuristically motivated computable quantities and on the approximation of the continuous active, strongly active, and inactive sets by their discrete counterparts. A detailed documentation of numerical results for two representative test examples illustrates the performance of the adaptive approach.

Mathematics Subject Classification (2000). Primary 65K15; Secondary 49M99; 65K10; 90C56.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Adams, J.J.F. Fournier, Sobolev Spaces, 2nd edn. (Academic, New York, 2003)

    MATH  Google Scholar 

  2. M. Ainsworth, J.T. Oden, C.Y. Lee, Local a posteriori error estimators for variational inequalities. Numer. Math. Partial Differ. Equ. 9, 23–33 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Babuska, J. Whiteman, T. Strouboulis, Finite Elements: An Introduction to the Method and Error Estimation. (Oxford University Press, Oxford, 2011)

    Google Scholar 

  4. V. Barbu, Optimal Control of Variational Inequalities. (Pitman, Boston/London/Melbourne, 1984)

    Google Scholar 

  5. R. Becker, H. Kapp, R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39, 113–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Braess, A posteriori error estimators for obstacle problems: another look. Numer. Math. 101, 415–421 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Braess, C. Carstensen, R.H.W. Hoppe, Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer. Math. 107, 455–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Braess, C. Carstensen, R.H.W. Hoppe, Error reduction in adaptive finite element approximations of elliptic obstacle problems. J. Comp. Math. 27, 148–169 (2009)

    MathSciNet  MATH  Google Scholar 

  9. S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  10. F. Facchinei, J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. (Springer, Berlin/Heidelberg/New York, 2003)

    Google Scholar 

  11. A. Gaevskaya, Adaptive finite element methods for optimally controlled elliptic variational inequalities, Ph.D. thesis, Institute for Mathematics, University of Augsburg, 2013

    Google Scholar 

  12. A. Gaevskaya, R.H.W. Hoppe, S. Repin, Functional approach to a posteriori error estimation for elliptic optimal control problems with distributed control. J. Math. Sci. 144, 4535–4547 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Grisvard, Elliptic Problems in Nonsmooth Domains. (Pitman, Boston/London/Melbourne, 1985)

    Google Scholar 

  14. A. Günther, M. Hinze, A posteriori error control of a state constrained elliptic control problem. J. Numer. Math. 16, 307–322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Hintermüller, R.H.W. Hoppe, Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47, 1721–1743 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Hintermüller, R.H.W. Hoppe, Goal oriented mesh adaptivity for mixed control-state elliptic optimal control problems, in Applied and Numerical Partial Differential Equations. Scientific Computing in Simulation, Optimization and Control in a Multidisciplinary Context, ed. by W. Fitzgibbon, Y. Kuznetsov, P. Neittaanmäki, J. Périaux, O. Pironneau. Computational Methods in Applied Sciences, vol. 15. (Springer, Berlin/Heidelberg/New York, 2009)

    Google Scholar 

  17. M. Hintermüller, R.H.W. Hoppe, Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations. SIAM J. Control Optim. 48, 5468–5487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Hintermüller, I. Kopacka, Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20, 868–902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Hintermüller, R.H.W. Hoppe, Y. Iliash, M. Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM Control Optim. Calc. Var. 14, 540–560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Hintermüller, M. Hinze, R.H.W. Hoppe, Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state-constraints. J. Comp. Math. 30, 101–123 (2012)

    Article  MATH  Google Scholar 

  21. M. Hintermüller, R.H.W. Hoppe, C. Löbhard, Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities. ESAIM Control Optim. Calc. Var. 20, 524–546 (2014)

    Google Scholar 

  22. R.H.W. Hoppe, R. Kornhuber, Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31, 301–323 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. R.H.W. Hoppe, Y. Iliash, C. Iyyunni, N. Sweilam, A posteriori error estimates for adaptive finite element discretizations of boundary control problems. J. Numer. Anal. 14, 57–82 (2006)

    MathSciNet  MATH  Google Scholar 

  24. C. Johnson, Adaptive finite element methods for the obstacle problem. Math. Models Methods Appl. Sci. 2, 483–487 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Its Applications. (SIAM, Philadelphia, 2000)

    Google Scholar 

  26. D. Klatte, B. Kummer, Nonsmooth Equations in Optimization: Regularity, Calculus, Methods, and Applications. (Kluwer, Dordrecht, 2002)

    Google Scholar 

  27. I. Kopacka, Mpecs/mpccs in functional space: first order optimality concepts, path-following and multilevel algorithms, Ph.D. thesis, Institute of Applied Mathematics, Karl-Franzens University at Graz, 2009

    Google Scholar 

  28. R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Z.Q. Luo, J.S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints. (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  30. F. Mignot, Contrôle dans les inèquations variationelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Mignot, J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22, 466–476 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory. (Springer, Berlin/Heidelberg/New York, 2006)

    Google Scholar 

  33. B.S. Mordukhovich, Variational Analysis and Generalized Differentiation II: Applications. (Springer, Berlin/Heidelberg/New York, 2006)

    Google Scholar 

  34. P. Neittaanmäki, J. Sprekels, D. Tiba, Optimization of Elliptic Systems: Theory and Applications. (Springer, Berlin/Heidelberg/New York, 2006)

    Google Scholar 

  35. R. Nochetto, K.G. Siebert, A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95, 163–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Outrata, M. Kocvara, J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. (Kluwer, Dordrecht, 1998)

    Google Scholar 

  37. J. Outrata, J. Zowe, A numerical approach to optimization problems with variational inquality constraints. Math. Program. 68, 105–130 (1995)

    MathSciNet  MATH  Google Scholar 

  38. H. Scheel, S. Scholtes, Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. K.G. Siebert, A. Veeser, A unilaterally constrained quadratic minimization with adaptive finite elements. SIAM J. Optim. 18, 260–289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. R.S. Strichartz, A Guide to Distribution Theory and Fourier Transforms. (World Scientific, River Edge, 2003)

    Google Scholar 

  42. F.T. Suttmeier, On a direct approach to adaptive FE-discretizations for elliptic variational inequalities. J. Numer. Math. 13, 73–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39, 146–167 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. (Teubner & Wiley, Stuttgart, 1996)

    Google Scholar 

  45. B. Vexler, W. Wollner, Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Optim. 47, 509–534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A.G. has been partially supported by a grant from the European Science Foundation within the Networking Programme ‘OPTPDE’. M.H. acknowledges support by the German Research Fund (DFG) through the Research Center MATHEON Project C28 and C31 and the SPP 1253 “Optimization with Partial Differential Equations”, and the Austrian Science Fund (FWF) through the START Project Y 305-N18 Interfaces and Free Boundaries and the SFB Project F32 04-N18 “Mathematical Optimization and Its Applications in Biomedical Sciences”. R.H.W.H. has been supported by the DFG Priority Programs SPP 1253 and SPP 1506, by the NSF grants DMS-0914788, DMS-1115658, by the Federal Ministry for Education and Research (BMBF) within the projects ‘FROPT’ and ‘MeFreSim’, and by the European Science Foundation within the Networking Programme ‘OPTPDE’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. W. Hoppe .

Editor information

Editors and Affiliations

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaevskaya, A., Hintermüller, M., Hoppe, R.H.W., Löbhard, C. (2014). Adaptive Finite Elements for Optimally Controlled Elliptic Variational Inequalities of Obstacle Type. In: Hoppe, R. (eds) Optimization with PDE Constraints. Lecture Notes in Computational Science and Engineering, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-319-08025-3_4

Download citation

Publish with us

Policies and ethics