Skip to main content

Phase Field Methods for Binary Recovery

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 101))

Abstract

We consider the inverse problem of recovering a binary function from blurred and noisy data. Such problems arise in many applications, for example image processing and optimal control of PDEs. Our formulation is based on the Mumford-Shah model, but with a phase field approximation to the perimeter regularisation. We use a double obstacle potential as well as a smooth double well potential. We introduce an iterative method for solving the problem, develop a suitable discretisation of this iterative method, and prove some convergence results. Numerical simulations are presented which illustrate the usefulness of the approach and the relative merits of the phase field models.

Mathematics Subject Classification (2010). Primary 49N45; Secondary 65K10, 68U10

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) Grant EP/H023364/1 and by the ESF within the Programme OPTPDE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.W. Barrett, C.M. Elliott, Finite element approximation of a free boundary problem arising in the theory of liquid drops and plasma physics. Math. Modell. Numer. Anal. 25, 213–252 (1991)

    MathSciNet  MATH  Google Scholar 

  2. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework. Computing 82, 103–119 (2008)

    MATH  Google Scholar 

  3. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE. Computing 82, 121–138 (2008)

    MATH  Google Scholar 

  4. P. Bastian, M. Blatt, A. Dedner, C. Engwer, J. Fahlke, C. Gräser, R. Klöfkorn, M. Nolte, M. Ohlberger, O. Sander, DUNE web page, 2011. http://www.dune-project.org

  5. M. Blatt, P. Bastian, The iterative solver template library. In: Applied Parallel Computing. State of the Art in Scientific Computing, ed. by B. Kagström, E. Elmroth, J. Dongarra, J. Wasniewski, pp. 666–675, Vol. 4699 of Lecture Notes in Computer Science (Springer, Berlin-Heidelberg-New York, 2007)

    Google Scholar 

  6. L. Blank, M. Butz, H. Garcke, Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method. ESAIM Contr Optim. Calculus Variat. 17, 931–954 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Blank, H. Garcke, L. Sarbu, V. Styles, Primal-dual active set methods for Allen-Cahn variational inequalities with nonlocal constraints. Numer. Meth. Part. Differ. Equat. 29(3), 999–1030 (2013) http://onlinelibrary.wiley.com/doi/10.1002/num.v29.3/issuetoc

  8. J.F. Blowey, C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis. Eur. J. Appl. Math. 2, 233–279 (1991)

    MathSciNet  MATH  Google Scholar 

  9. J.F. Blowey, C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. Eur. J. Appl. Math. 3, 147–179 (1992)

    MathSciNet  MATH  Google Scholar 

  10. J.E. Blowey, C.M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems. In: Degenerate Diffusions, ed. by W.M. Ni, L.A. Peletier, L. Vazquez (Springer, Berlin-Heidelberg-New York, 1993), pp. 19–60

    Chapter  Google Scholar 

  11. A. Chambolle, P. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Chambolle, G. Del Maso, Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM Math. Modell. Numer. Anal. 33, 651–672 (1999)

    Article  MATH  Google Scholar 

  13. T.F. Chan, S. Esedoglu, Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65, 1817–1837 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Chan, S. Esedoglu, M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Chen, C.M. Elliott, Asymptotics for a parabolic double obstacle problem. Proc. R. Soc. Lond. A. 444(1922), 429–445 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Choksi, Y. Van Gennip, Deblurring of one dimensional bar codes via total variation energy minimisation. SIAM J. Imag. Sci. 3, 735–764 (2010)

    Article  MATH  Google Scholar 

  17. R. Choksi, Y. Van Gennip, A. Oberman, Anisotropic total variation regularized L1-approximation and denoising/deblurring of 2D bar codes. Preprint, arXiv:1007.1035 (2010)

    Google Scholar 

  18. A. Dedner, R. Klöfkorn, M. Nolte, M. Ohlberger, A generic interface for parallel and adaptive scientific computing: Abstraction principles and the DUNE-FEM module. Computing 90, 165–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Dedner, R. Klöfkorn, M. Nolte, M. Ohlberger, DUNE-FEM web page. 2011. http://dune.mathematik.uni-freiburg.de

  20. C.M. Elliott, A.M. Stuart, The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Esedoglu, Blind deconvolution of bar code signals. Inverse Probl. 20, 121–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. D.J. Eyre, An unconditionally stable one-step scheme for gradient systems. Unpublished article (1998)

    Google Scholar 

  23. C. Gräser, R. Kornhuber, Multigrid methods for obstacle problems. J. Comput. Math. 27, 1–44 (2009)

    MathSciNet  MATH  Google Scholar 

  24. R. Glowinski, Numerical Methods for Nonlinear Variational Problems (Springer, Berlin-Heidelberg-New York, 1984)

    Book  MATH  Google Scholar 

  25. C. Gräser, Convex minimization and phase field models. PhD thesis, Freie Universität Berlin, 2011

    Google Scholar 

  26. B. Hackl, Geometry variations, level set and phase-field methods for perimeter regularized geometric inverse problems. PhD thesis, Johannes Kepler Universität Linz, 2006

    Google Scholar 

  27. J.K. Hale, Asymptotic Behavior of Dissipative Systems (American Mathematical Society, Providence, 1988)

    MATH  Google Scholar 

  28. L. Modica, S. Mortola, Un esempio di \(\Gamma \)-convergenza. Bollettino dell’Unione Matematica Italiana 14-B, 285–299 (1977)

    MathSciNet  Google Scholar 

  29. D.B. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Petra, G. Stadler, Model variational inverse problems governed by partial differential equations. Technical Report ADA555315, University of Texas at Austin, Institute for Computational Engineering and Sciences, 2011

    Google Scholar 

  31. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  32. L. Sarbu, Primal-dual active set methods for Allen-Cahn variational inequalities. PhD thesis, University of Sussex, 2010

    Google Scholar 

  33. X. Tai, T.F. Chan, A survey on multiple level set methods with applications for identifying piecewise constant functions. Int. J. Numer. Anal. Modell. 1, 25–47 (2004)

    MathSciNet  MATH  Google Scholar 

  34. X. Tai, H. Li, A piecewise constant level set method for elliptic inverse problems. Appl. Numer. Math. 57, 686–696 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Carsten Gräser for sharing his Dune-Solvers code for the TNNMG method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Brett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brett, C., Elliott, C.M., Dedner, A.S. (2014). Phase Field Methods for Binary Recovery. In: Hoppe, R. (eds) Optimization with PDE Constraints. Lecture Notes in Computational Science and Engineering, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-319-08025-3_2

Download citation

Publish with us

Policies and ethics