High Temperature and Density in Lattice QCD

  • Carleton DeTarEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 889)


These lectures provide an introduction to lattice gauge theory calculations of the properties of strongly interacting matter at high temperatures and densities. Such an environment is produced in heavy ion collisions and was most likely present in the early universe. Emphasis is placed, not on formalism, rather on an intuitive understanding of the nature of the crossover from the confined, chiral-symmetry-broken phase to the deconfined, chiral-symmetry-restored phase. Illustrations are taken from results of recent numerical simulations. Connections with phenomenology are discussed.


Partition Function Quark Masse Chiral Symmetry Strange Quark Goldstone Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank the organizers of the summer school for their hospitality and excellent organization. I am grateful to Ludmila Levkova for critical comments.


  1. 31.
    T. Banks, A. Casher, Nucl. Phys. B169, 103 (1980)ADSCrossRefMathSciNetGoogle Scholar
  2. 402.
    L.G. Yaffe, B. Svetitsky, Phys. Rev. D26, 963 (1982)ADSGoogle Scholar
  3. 403.
    T.A. DeGrand, C.E. DeTar, Nucl. Phys. B225, 590 (1983)ADSCrossRefGoogle Scholar
  4. 404.
    WHOT-QCD Collaboration, S. Ejiri et al., Central Eur. J. Phys. 10, 1322 (2012). arXiv:1203.3793Google Scholar
  5. 405.
    A. Patel, Nucl. Phys. B243, 411 (1984)ADSCrossRefGoogle Scholar
  6. 406.
    A. Patel, Phys. Lett. B139, 394 (1984)ADSCrossRefGoogle Scholar
  7. 407.
    F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B605, 579 (2001). arXiv:hep-lat/0012023Google Scholar
  8. 408.
    A. Bazavov et al., Phys. Rev. D80, 014504 (2009). arXiv:0903.4379Google Scholar
  9. 409.
    A. Jakovac, P. Petreczky, K. Petrov, A. Velytsky, Phys. Rev. D75, 014506 (2007). arXiv:hep-lat/0611017Google Scholar
  10. 410.
    M. Asakawa, T. Hatsuda, Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001). arXiv:hep-lat/0011040Google Scholar
  11. 411.
    F. Karsch, E. Laermann, P. Petreczky, S. Stickan, I. Wetzorke, Phys. Lett. B530, 147 (2002). arXiv:hep-lat/0110208Google Scholar
  12. 412.
    H.B. Meyer, Phys. Rev. Lett. 100, 162001 (2008). arXiv:0710.3717Google Scholar
  13. 413.
    R.D. Pisarski, F. Wilczek, Phys. Rev. D29, 338 (1984)ADSGoogle Scholar
  14. 414.
    E. Laermann, O. Philipsen, Ann. Rev. Nucl. Part. Sci. 53, 163 (2003). arXiv:hep-ph/0303042Google Scholar
  15. 415.
    A. Bazavov et al., Phys. Rev. D85, 054503 (2012). arXiv:1111.1710Google Scholar
  16. 416.
    H. Ohno, U. Heller, F. Karsch, S. Mukherjee, PoS LATTICE2011, 210 (2011). arXiv:1111.1939Google Scholar
  17. 417.
    H. Ohno, U. Heller, F. Karsch, S. Mukherjee, PoS LATTICE2012, 095 (2012). arXiv:1211.2591Google Scholar
  18. 418.
    HotQCD Collaboration, A. Bazavov et al., Phys. Rev. D86, 094503 (2012). arXiv:1205.3535Google Scholar
  19. 419.
    C. DeTar et al., Phys. Rev. D81, 114504 (2010). arXiv:1003.5682Google Scholar
  20. 420.
    C. Bernard et al., Phys. Rev. D77, 014503 (2008). arXiv:0710.1330Google Scholar
  21. 421.
    HotQCD Collaboration, A. Bazavov et al., Phys. Rev. D86, 034509 (2012). arXiv:1203.0784Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of UtahSalt Lake CityUSA

Personalised recommendations