Advertisement

Chiral Perturbation Theory

  • Brian C. TiburziEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 889)

Abstract

The era of high-precision lattice QCD has led to synergy between lattice computations and phenomenological input from chiral perturbation theory. We provide an introduction to chiral perturbation theory with a bent towards understanding properties of the nucleon and other low-lying baryons. Four main topics are the basis for this chapter. We begin with a discussion of broken symmetries and the procedure to construct the chiral Lagrangian. The second topic concerns specialized applications of chiral perturbation theory tailored to lattice QCD, such as partial quenching, lattice discretization, and finite-volume effects. We describe inclusion of the nucleon in chiral perturbation theory using a heavy-fermion Euclidean action. Issues of convergence are taken up as our final topic. We consider expansions in powers of the strange-quark mass, and the appearance of unphysical singularities in the heavy-particle formulation. Our aim is to guide lattice practitioners in understanding the predictions chiral perturbation theory makes for baryons, and show how the lattice will play a role in testing the rigor of the chiral expansion at physical values of the quark masses.

Notes

Acknowledgements

Work supported by a joint City College of New York – RIKEN/Brookhaven Research Center fellowship, an award of the Professional Staff Congress of the City University of New York, the Alfred P. Sloan foundation through a City University of New York Junior Faculty Research Award in Science and Engineering, and by the U.S. National Science Foundation, under grant number PHY12-05778.

References

  1. 18.
    K. Symanzik, Nucl. Phys. B226, 187 (1983)ADSCrossRefMathSciNetGoogle Scholar
  2. 50.
    D.B. Kaplan, 223 (2009). arXiv:0912.2560Google Scholar
  3. 173.
    J. Gasser, H. Leutwyler, Phys. Rept. 87, 77 (1982)ADSCrossRefGoogle Scholar
  4. 174.
    J. Donoghue, E. Golowich, B.R. Holstein, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2, 1 (1992)Google Scholar
  5. 175.
    A.V. Manohar, M.B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000)Google Scholar
  6. 176.
    D.B. Kaplan, nucl-th/0510023 (2005)Google Scholar
  7. 177.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)ADSCrossRefGoogle Scholar
  8. 178.
    J. Goldstone, Nuovo Cim. 19, 154 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 179.
    C. Vafa, E. Witten, Nucl. Phys. B234, 173 (1984)ADSCrossRefMathSciNetGoogle Scholar
  10. 180.
    C. Vafa, E. Witten, Phys. Rev. Lett. 53, 535 (1984)ADSCrossRefGoogle Scholar
  11. 181.
    H. Leutwyler, Ann. Phys. 235, 165 (1994). arXiv:hep-ph/9311274Google Scholar
  12. 182.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)ADSCrossRefMathSciNetGoogle Scholar
  13. 183.
    A. Morel, J. Phys. (France) 48, 1111 (1987)CrossRefGoogle Scholar
  14. 184.
    C.W. Bernard, M.F. Golterman, Phys. Rev. D49, 486 (1994). arXiv:hep-lat/9306005Google Scholar
  15. 186.
    M.F. Golterman, K.-C. Leung, Phys. Rev. D57, 5703 (1998). arXiv:hep-lat/9711033Google Scholar
  16. 187.
    S.R. Sharpe, N. Shoresh, Phys. Rev. D62, 094503 (2000). arXiv:hep-lat/0006017Google Scholar
  17. 188.
    S.R. Sharpe, N. Shoresh, Phys. Rev. D64, 114510 (2001). arXiv:hep-lat/0108003Google Scholar
  18. 189.
    J. Hu, F.-J. Jiang, B.C. Tiburzi, Phys. Lett. B653, 350 (2007). arXiv:0706.3408Google Scholar
  19. 190.
    J. Gasser, H. Leutwyler, Phys. Lett. B188, 477 (1987)ADSCrossRefGoogle Scholar
  20. 191.
    J. Gasser, H. Leutwyler, Phys. Lett. B184, 83 (1987)ADSCrossRefGoogle Scholar
  21. 192.
    S.R. Sharpe, R.L. Singleton, Phys. Rev. D58, 074501 (1998). arXiv:hep-lat/9804028Google Scholar
  22. 193.
    W.-J. Lee, S.R. Sharpe, Phys. Rev. D60, 114503 (1999). arXiv:hep-lat/9905023Google Scholar
  23. 194.
    B. Sheikholeslami, R. Wohlert, Nucl. Phys. B259, 572 (1985)ADSCrossRefGoogle Scholar
  24. 195.
    S. Aoki, Phys. Rev. D30, 2653 (1984)ADSGoogle Scholar
  25. 196.
    O. Bär, G. Rupak, N. Shoresh, Phys. Rev. D67, 114505 (2003). arXiv:hep-lat/0210050Google Scholar
  26. 197.
    J.-W. Chen, D. O’Connell, A. Walker-Loud, JHEP 0904, 090 (2009). arXiv:0706.0035Google Scholar
  27. 198.
    J.-W. Chen, M. Golterman, D. O’Connell, A. Walker-Loud, Phys. Rev. D79, 117502 (2009). arXiv:0905.2566Google Scholar
  28. 199.
    E.E. Jenkins, A.V. Manohar, Phys. Lett. B255, 558 (1991)ADSCrossRefGoogle Scholar
  29. 200.
    S.R. Beane, M.J. Savage, Phys. Lett. B556, 142 (2003). arXiv:hep-ph/0212106Google Scholar
  30. 201.
    L.S. Brown, W. Pardee, R. Peccei, Phys. Rev. D4, 2801 (1971)ADSGoogle Scholar
  31. 202.
    V. Bernard, N. Kaiser, U.-G. Meißner, Phys. Lett. B389, 144 (1996). arXiv:hep-ph/9607245Google Scholar
  32. 203.
    A. Kryjevski, Phys. Rev. D70, 094028 (2004). arXiv:hep-ph/0312196Google Scholar
  33. 204.
    A. Walker-Loud et al., Phys. Rev. D79, 054502 (2009). arXiv:0806.4549Google Scholar
  34. 205.
    V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E4, 193 (1995). arXiv:hep-ph/9501384Google Scholar
  35. 206.
    S.L. Adler, Y. Dothan, Phys. Rev. 151, 1267 (1966)ADSCrossRefGoogle Scholar
  36. 207.
    T.R. Hemmert, B.R. Holstein, J. Kambor, J. Phys. G24, 1831 (1998). arXiv:hep-ph/9712496Google Scholar
  37. 208.
    J. Gasser, H. Leutwyler, Nucl. Phys. B250, 465 (1985)ADSCrossRefGoogle Scholar
  38. 209.
    J. Bijnens, I. Jemos, Eur. Phys. J. C64, 273 (2009). arXiv:0906.3118Google Scholar
  39. 210.
    M.N. Butler, M.J. Savage, R.P. Springer, Nucl. Phys. B399, 69 (1993). arXiv:hep-ph/9211247Google Scholar
  40. 211.
    H.-W. Lin, K. Orginos, Phys. Rev. D79, 074507 (2009). arXiv:0812.4456Google Scholar
  41. 212.
    RBC-UKQCD Collaboration, C. Allton et al., Phys. Rev. D78, 114509 (2008). arXiv:0804.0473Google Scholar
  42. 213.
    A. Roessl, Nucl. Phys. B555, 507 (1999). arXiv:hep-ph/9904230Google Scholar
  43. 215.
    F.-J. Jiang, B.C. Tiburzi, A. Walker-Loud, Phys. Lett. B695, 329 (2011). arXiv:0911.4721Google Scholar
  44. 216.
    T. Becher, H. Leutwyler, Eur. Phys. J. C9, 643 (1999). arXiv:hep-ph/9901384Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PhysicsThe City College of New YorkNew YorkUSA
  2. 2.Graduate School and University CenterThe City University of New YorkNew YorkUSA
  3. 3.RIKEN BNL Research CenterBrookhaven National LaboratoryUptonUSA

Personalised recommendations