Skip to main content

Lines Missing Every Random Point

  • Conference paper
Language, Life, Limits (CiE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8493))

Included in the following conference series:

  • 715 Accesses

Abstract

We prove that there is, in every direction in Euclidean space, a line that misses every computably random point. We also prove that there exist, in every direction in Euclidean space, arbitrarily long line segments missing every double exponential time random point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besicovitch, A.S.: Sur deux questions d’intégrabilité des fonctions. Journal de la Société de physique et de mathematique de l’Universite de Perm 2, 105–123 (1919)

    Google Scholar 

  2. Besicovitch, A.S.: On Kakeya’s problem and a similar one. Mathematische Zeitschrift 27, 312–320 (1928)

    Article  MathSciNet  Google Scholar 

  3. Besicovitch, A.S.: On the fundamental geometric properties of linearly measurable plane sets of points. Mathematische Annalen 98, 422–464 (1928)

    Article  MathSciNet  Google Scholar 

  4. Besicovitch, A.S.: The Kakeya problem. American Mathematical Monthly 70, 697–706 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  5. Besicovitch, A.S.: On fundamental geometric properties of plane line sets. Journal of the London Mathematical Society 39, 441–448 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  6. Couch, P.J., Daniel, B.D., McNicholl, T.H.: Computing space-filling curves. Theory of Computing Systems 50(2), 370–386 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davies, R.O.: Some remarks on the Kakeya problem. Proceedings of the Cambridge Philosophical Society 69, 417–421 (1971)

    Article  MATH  Google Scholar 

  8. Dougherty, R., Lutz, J.H., Mauldin, R.D., Teutsch, J.: Translating the Cantor set by a random real. Transactions of the American Mathematical Society 366, 3027–3041 (2014)

    Article  MathSciNet  Google Scholar 

  9. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2010)

    Google Scholar 

  10. Falconer, K.J.: Sections of sets of zero Lebesgue measure. Mathematika 27, 90–96 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge University Press (1985)

    Google Scholar 

  12. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley (2003)

    Google Scholar 

  13. Fujiwara, M., Kakeya, S.: On some problems of maxima and minima for the curve of constant breadth and the in-revolvable curve of the equilateral triangle. Tôhoku Science Reports 11, 92–110 (1917)

    MATH  Google Scholar 

  14. Gu, X., Lutz, J.H., Mayordomo, E.: Points on computable curves. In: FOCS, pp. 469–474. IEEE Computer Society (2006)

    Google Scholar 

  15. Harkins, R.C., Hitchcock, J.M.: Upward separations and weaker hypotheses in resource-bounded measure. Theoretical Computer Science 389(1-2), 162–171 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kakeya, S.: Some problems on maxima and minima regarding ovals. Tôhoku Science Reports 6, 71–88 (1917)

    MATH  Google Scholar 

  17. Katz, N., Tao, T.: Recent progress on the Kakeya conjecture. In: Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, pp. 161–180. Publicacions Matematiques (2002)

    Google Scholar 

  18. Kurtz, S.: Randomness and Genericity in the Degrees of Unsolvability. PhD thesis, University of Illinois at Urbana-Champaign (1981)

    Google Scholar 

  19. Kjos-Hanssen, B., Nerode, A.: Effective dimension of points visited by Brownian motion. Theoretical Computer Science 410(4-5), 347–354 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences 44(2), 220–258 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lutz, J.H., Mayordomo, E.: Dimensions of points in self-similar fractals. SIAM J. Comput. 38(3), 1080–1112 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. McNicholl, T.H.: The power of backtracking and the confinement of length. Proceedings of the American Mathematical Society 141(3), 1041–1053 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nies, A.: Computability and Randomness. Oxford University Press, Inc., New York (2009)

    Google Scholar 

  24. Perron, O.: Über einen Satz von Besicovitch. Mathematische Zeitschrift 28, 383–386 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rettinger, R., Zheng, X.: Points on computable curves of computable lengths. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 736–743. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Schnorr, C.-P.: A unified approach to the definition of a random sequence. Mathematical Systems Theory 5, 246–258 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schnorr, C.-P.: Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics, vol. 218. Springer (1971)

    Google Scholar 

  28. Schoenberg, I.J.: On the Besicovitch-Perron solution of the Kakeya problem. In: Studies in Mathematical Analysis and Related Topics, Pólya, vol. 383-386 (1962)

    Google Scholar 

  29. Ville, J.: Étude Critique de la Notion de Collectif. Gauthier–Villars, Paris (1939)

    Google Scholar 

  30. Wang, Y.: Randomness and Complexity. PhD thesis, University of Heidelberg (1996)

    Google Scholar 

  31. Zheng, X., Rettinger, R.: Point-separable classes of simple computable planar curves. Logical Methods in Computer Science 8(3) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lutz, J.H., Lutz, N. (2014). Lines Missing Every Random Point. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds) Language, Life, Limits. CiE 2014. Lecture Notes in Computer Science, vol 8493. Springer, Cham. https://doi.org/10.1007/978-3-319-08019-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08019-2_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08018-5

  • Online ISBN: 978-3-319-08019-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics