Skip to main content

Complexity of Operation Problems

  • Conference paper
Language, Life, Limits (CiE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8493))

Included in the following conference series:

  • 709 Accesses

Abstract

The operation problem for several classes of automata and other language descriptors is addressed: Fix an operation on formal languages. Given a class of automata (or other language descriptors), is the application of this operation to the given class still a language represented by a device of that class? In particular, several aspects of complexity in connection with these problems are considered. Is the problem decidable or not? What is the computational complexity of the decision procedure, or what is its precise level in the arithmetic hierarchy? What is the blow-up of the size of the resulting device, if it exists, in terms of the sizes of the given ones? Otherwise, is there a so-called non-recursive trade-off between the representation by devices combined with the operation and the representation by just one device? We present some selected results on the computational and descriptional complexity of operation problems and draw attention to the overall picture and some of the main ideas involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. System Sci. 8, 315–332 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berman, P., Lingas, A.: On the complexity of regular languages in terms of finite automata. Tech. Rep. 304, Polish Academy of Sciences (1977)

    Google Scholar 

  3. Birget, J.C.: Partial orders on words, minimal elements of regular languages and state complexity. Theoret. Comput. Sci. 119, 267–291 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birget, J.C.: Erratum: Partial orders on words, minimal elements of regular languages and state complexity (2002), http://clam.rutgers.edu/~birget/papers.html

  5. Bordihn, H., Holzer, M., Kutrib, M.: Unsolvability levels of operation problems for subclasses of context-free languages. Int. J. Found. Comput. Sci. 16, 423–440 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bordihn, H., Holzer, M., Kutrib, M.: Decidability of operation problems for t0l languages and subclasses. Inform. Comput. 209, 344–352 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser languages. Inform. Comput. 141, 1–36 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(2), 149–158 (1986); errata: Theoret. Comput. Sci. 302, 497–498 (2003)

    Google Scholar 

  9. Cudia, D.F.: The degree hierarchy of undecidable problems of formal grammars. In: Symposium on Theory of Computing (STOC 1970), pp. 10–21. ACM Press (1970)

    Google Scholar 

  10. Dassow, J., Păun, G., Salomaa, A.: On the union of 0l languages. Inform. Process. Lett. 47, 59–63 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. Internat. J. Comput. Math. 35, 117–132 (1990)

    Article  MATH  Google Scholar 

  12. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Inform. Comput. 205(8), 1173–1187 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. Inform. Comput. 209, 1016–1025 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. UCS 8, 193–234 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Gruber, H., Holzer, M., Kutrib, M.: On measuring non-recursive trade-offs. J. Autom., Lang. Comb. 15, 107–120 (2010)

    Google Scholar 

  17. Hartmanis, J.: On Gödel speed-up and succinctness of language representations. Theoret. Comput. Sci. 26, 335–342 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Herman, G.T., Lee, P., van Leeuwen, J., Rozenberg, G.: Characterization of unary developmental languages. Discrete Mathematics 6, 235–247 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Holzer, M., Kutrib, M.: Nondeterministic finite automata – Recent results on the descriptional and computational complexity. Int. J. Found. Comput. Sci. 20, 563–580 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Holzer, M., Kutrib, M.: Descriptional complexity – An introductory survey. In: Scientific Applications of Language Methods, pp. 1–58. Imperial College Press (2010)

    Google Scholar 

  22. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979)

    Google Scholar 

  23. Jirásková, G.: State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330(2), 287–298 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jirásková, G.: Descriptional complexity of operations on alternating and Boolean automata. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 196–204. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way finite automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 443–454. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Kapoutsis, C.A.: Two-way automata versus logarithmic space. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 359–372. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of l/poly versus nl. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 217–228. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput. Sci. 16, 957–973 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kutrib, M., Malcher, A.: When Church-Rosser becomes context free. Int. J. Found. Comput. Sci. 18, 1293–1302 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kutrib, M., Malcher, A., Wendlandt, M.: States and heads do count for unary multi-head finite automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 214–225. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  31. Kutrib, M., Malcher, A., Wendlandt, M.: Size of unary one-way multi-head finite automata. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 148–159. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  32. Leiss, E.L.: Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 18, 280–299 (1968)

    Google Scholar 

  34. Lindenmayer, A.: Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J. Theor. Biol. 18, 300–315 (1968)

    Article  Google Scholar 

  35. Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kybernetiki 9, 328–335 (1963) (in Russian); German translation: Über den Vergleich zweier Typen endlicher Quellen. Probleme der Kybernetik 6, 328–335 (1966)

    Google Scholar 

  36. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Dokl. 11, 1373–1375 (1970); (English translation); Dokl. Akad. Nauk SSSR 194, 1266–1268 (1970) (in Russian)

    Google Scholar 

  37. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. ACM 35, 324–344 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mera, F., Pighizzini, G.: Complementing unary nondeterministic automata. Theoret. Comput. Sci. 330, 349–360 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Symposium on Switching and Automata Theory (SWAT 1971), pp. 188–191. IEEE (1971)

    Google Scholar 

  40. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. 20, 1211–1214 (1971)

    Article  MATH  Google Scholar 

  41. Niemann, G., Otto, F.: The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages. Inform. Comput. 197, 1–21 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pighizzini, G.: Deterministic pushdown automata and unary languages. Int. J. Found. Comput. Sci. 20, 629–645 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Pighizzini, G., Shallit, J., Wang, M.W.: Unary context-free grammars and pushdown automata, descriptional complexity and auxiliary space lower bounds. J. Comput. System Sci. 65, 393–414 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill (1967)

    Google Scholar 

  45. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: Symposium on Theory of Computing (STOC 1978), pp. 275–286. ACM Press (1978)

    Google Scholar 

  46. Salomaa, A.: Solutions of a decision problem concerning unary Lindenmayer systems. Discrete Mathematics 9, 71–77 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yu, S.: State complexity of regular languages. J. Autom., Lang. Comb. 6, 221–234 (2001)

    MATH  MathSciNet  Google Scholar 

  48. Yu, S.: State complexity of finite and infinite regular languages. Bull. EATCS 76, 142–152 (2002)

    MATH  Google Scholar 

  49. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kutrib, M. (2014). Complexity of Operation Problems. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds) Language, Life, Limits. CiE 2014. Lecture Notes in Computer Science, vol 8493. Springer, Cham. https://doi.org/10.1007/978-3-319-08019-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08019-2_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08018-5

  • Online ISBN: 978-3-319-08019-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics