Skip to main content

Physical, Chemical and Biological Parameters for Compost Maturity Assessment: A Review

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 3))

Abstract

New livestock production system based on intensification of large farms produces huge amounts of organic waste materials in the form of farm, animal, domestic and agro-industrial waste all over the world without enough agricultural land for their direct application as fertilizers. Compost stability/maturity has become a critical issue for land application of composts because immature compost can be determinant for plant growth and the soil environment. Evaluation of maturity of compost has been widely recognized as one of the most important problems concerning composting process and application of this product to land. In order to provide and review the information found in the literature about composting of different organic waste materials, the first part of this chapter explains basic concepts of composting process. Then a summary of physical, chemical and biological parameters affecting stability and maturity of high quality compost prepared from organic waste materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adani F, Genevini PL, Tambone F (1995) An new index of organic matter stability. Compost Sci Util 3(2):25–37

    Article  Google Scholar 

  • Albonetti SG, Massar G (1979) Microbiological aspects of a municipal waste composting system. Eur J Appl Microbiol Biotechnol 7:91–98

    Article  CAS  Google Scholar 

  • Antil RS, Raj D (2012) Chemical and microbiological parameters for the characterization of maturity of composts prepared from farm and agro-industrial wastes. Arch Agron Soil Sci 58:833–845

    Article  CAS  Google Scholar 

  • Antil RS, Raj D, Narwal RP, Singh JP (2012) Evaluation of maturity and stability parameters of composts prepared from a wide range of organic wastes and their response to wheat. Waste Biomass Valoriz 4:95–104

    Article  Google Scholar 

  • Avnimelech Y, Bruner M, Ezrony I, Sela R, Kochba M (1996) Stability index for municipal solid wastes compost. Compost Sci Util 4(2):13–20

    Article  Google Scholar 

  • Barrena-Gómez R, Vázquez Lima F, Sánchez Ferrer A (2006) The use of respiration indices in the composting process: a review. Waste Manage Res 24:37–47

    Article  Google Scholar 

  • Benito M, Masaguer A, Moliner A, Arrigo N, Palma RM (2003) Chemical and microbiological parameters for the characterization of the stability and maturity of pruning waste compost. Biol Fertil Soils 37:184–189

    CAS  Google Scholar 

  • Bernal MP, Paredes C, Sanchew-Monedero MA, Cegarra J (1998) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour Technol 63:91–99

    Article  CAS  Google Scholar 

  • Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria of compost maturity assessment: a review. Bioresour Technol 100:5444–5453

    Article  PubMed  CAS  Google Scholar 

  • BOE (2005) Real Decreto 824/2005, de 8 de julio, sobre productos fertilizantes. Boletín Oficial del Estado 171:25592–25669

    Google Scholar 

  • Boulter JI, Boland GJ, Trevors, JT (2000) Compost: a study of the development process and end-product potential for suppression of turfgrass disease. World J Microbio Biotech 16:115–134

    Article  CAS  Google Scholar 

  • BSI (2005) PAS 100:2005, Specification for composted materials. British Standard Institution, London

    Google Scholar 

  • Cambardella CA, Richard TL, Russell A (2003) Compost mineralization in soil as a function of composting process conditions. Eur J Soil Biol 39:117–127

    Article  CAS  Google Scholar 

  • Cardenas RR, Wang LK (1980) Composting process. Handbook of environmental engineering, vol II. The Human Press, New York, pp 269–327

    Google Scholar 

  • Chang JI, Chen YJ (2010) Effects of bulking agents on food waste composting. Bioresour Technol 101:5917–5924

    Article  PubMed  CAS  Google Scholar 

  • Chanyasak V, Kubota H (1981) Carbon/organic nitrogen ratio in water extract as measure of compost degradation. J Ferment Technol 59:215–219

    CAS  Google Scholar 

  • Chefetz B, Hatcher PG, Hadar Y, Chen Y (1996) Chemical and biological characterization of organic matter during composting of municipal solid wastes. J Environ Qual 25:776–785

    Article  CAS  Google Scholar 

  • Chen Y (2003) Nuclear magnetic resonance, infra-red and pyrolysis: application of spectroscopic methodologies to maturity determination of composts. Compost Sci Utiliz 11:152–168

    Article  Google Scholar 

  • Chen Y, Inbar Y (1993) Chemical and spectroscopic analyses of organic matter transformation during composting in relation to compost maturity. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting: design, environmental, microbiology and utilization aspects. Renaissance Publications, Ohio, pp 551–600

    Google Scholar 

  • Cooperband LR, Stone AG, Fryda MR, Ravet JL (2003) Relating compost measures of stability and maturity to plant growth. Compost Sci Util 11:113–124

    Article  Google Scholar 

  • Dahshan H, Abd-Elall AMM, Mahdy A, Abd-El-Kader, Megahed AM (2013) Field-scale management and evaluation of recycled cattle manure solids from livestock in Nile Delta ecosystem. African J Agric Res 8:2829–2836

    Google Scholar 

  • de Bertoldi M, Zucconi F (1980) Microbiologia della transformazione deirifiuti solidi unbani in compost e loro utilizzazione in agricoltura. Ingegneria ambientale 9:209–216

    Google Scholar 

  • de Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manage Res 1:157–176

    Article  CAS  Google Scholar 

  • Eggen T, Vethe O (2001) Stability indices for different composts. Compost Sci Util 9:19–26

    Article  Google Scholar 

  • Epstein E (1997) The science of composting. Technomic Publishing Company Inc., Lancaster

    Google Scholar 

  • Estrada J, Sana J, Cequiel RM, Cruanas R (1987) Application of a new method for CEC determination as a compost maturity index. In: De Berfoldi M, Feerranti MP, Hermite PL, Zucconi F (eds) Compost: production, quality and use. Elsevier, London pp 334–340

    Google Scholar 

  • European Commission (2001) Working document: biological treatment of biowaste, 2nd draft, pp 22

    Google Scholar 

  • Finstein MS, Miller FC (1985) Principles of composting leading to maximization of decomposition rate, odor control and cost effectiveness. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier Applied science Publications, Barking, pp 13–26

    Google Scholar 

  • Fuchs JG (2002) Practical use of quality compost for plant health and vitality improvement. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, Heiderlberg, pp 435–444

    Chapter  Google Scholar 

  • Garcia C, Hernandez T, Costa F (1991) Changes in carbon fractions during composting and maturation of organic wastes. Environ Manage 15:433–439

    Article  Google Scholar 

  • García-Gómez A, Bernal MP, Roig A (2003) Carbon mineralisation and plant growth in soil amended with compost samples at different degrees of maturity. Waste Manage Res 21(2):161–171

    Article  Google Scholar 

  • Ge B, McCartney D, Zeb J (2006) Compost environmental protection standards in Canada. J Environ Eng Sci 5:221–234

    Article  CAS  Google Scholar 

  • Golueke CG (1981) Principles of biological resources recovery. BioCycle 22:36–40

    CAS  Google Scholar 

  • Goyal S, Dhull SK, Kapoor KK (2005) Chemical and biological changes during composting of different wastes and assessment of compost maturity. Bioresour Technol 96:1584–1591

    Article  PubMed  CAS  Google Scholar 

  • Gray KR, Sherman K, Biddlestone AJ (1971) A review of composting. Part I. Microbiology and biochemistry, process. Biochemistry 6:32–36

    Google Scholar 

  • Harada Y, Inoko A (1980) Relationship between cation exchange capacity and degree of maturity of city refuse composts. Soil Sci Plant Nutr 26:353–362

    Article  Google Scholar 

  • Haug RT (1980) Compost engineering: principals and practice. Ann Arbor Science, Michigan

    Google Scholar 

  • He XT, Logan TJ, Traine SJ (1995) Physical and chemical characteristics of selected US municipal solid waste composts. J Environ Qual 24:543–552

    Article  CAS  Google Scholar 

  • Hellmann B, Zelles L, Palojarvi A, Bai Q (1997) Emissions of climate-relevant trace gases and succession of microbial communities during open-windrow composting. Applied Environ Microbiol 63:1011–1018

    CAS  Google Scholar 

  • Hoekstra NJ, Bosker T, Lantinga EA (2002) Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L). Agric Ecosyst Environ 93:189–196

    Article  Google Scholar 

  • Hoitink HAJ (2000) Trends in treatment and utilization of solid wastes through composting in the United States. In: Warman PR, Taylor BR (eds) Proc International Composting Symp, vol 1. CBA Press Inc., Nova Scotia, pp 1–13

    Google Scholar 

  • Hue NV, Liu J (1995) Predicting compost stability. Compost Sci Util 3:8–15

    Article  Google Scholar 

  • Iannotti DA, Grebus ME, Toth BL, Madden LV, Hoitink HAJ (1994) Oxygen respirometry to assess stability and maturity of composted municipal solid waste. J Environ Qual 23:1177–1183

    Article  CAS  Google Scholar 

  • Iglesias Jiménez E, Pérez García V (1992) Determination of maturity indices for city refuse composts. Agric Ecosyst Environ 38(4):331–343

    Article  Google Scholar 

  • Inbar Y, Hadar Y, Chen Y (1993) Recycling of cattle manure: the composting process and characterization of maturity. J Environ Qual 22:857–863

    Article  Google Scholar 

  • Ishii K, Fukui M, Takii S (2000) Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 89:768–777

    Article  PubMed  CAS  Google Scholar 

  • Itavaara M, Vikman M, Venelampi O (1997) Windrow composting of biodegradable packaging materials. Compost Sci Util 5:84–92

    Article  Google Scholar 

  • Itavaara M, Venelampi O, Vikman M, Kapanen A (2002) Compost maturity—problems associated with testing. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, Heidelberg, pp 373–382

    Chapter  Google Scholar 

  • Juste C (1980) Advantages et inconvenient de I’ utilization des composts d’ ordures menageres comme amendment organique des soils ou supports de culture International conference on compost, 22–26 Jan, Madrid, Spain. Min Obras Publicas

    Google Scholar 

  • Keener HM, Dick WA, Hoitink HAJ (2000) Composting and beneficial utilization of composted by-product materials. In: Dick WA (ed) Land application of agricultural, industrial, and municipal by-products. Soil Science Society of America Inc., Madison, pp 315–341

    Google Scholar 

  • Kirchmann H, Widen P (1994) Separately collected organic household wastes. Swedish J Agric Res 24:3–12

    CAS  Google Scholar 

  • Ko HJ, Kim KY, Kim HT, Kim CN, Umeda M (2008) Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage 28:813–820

    Article  CAS  Google Scholar 

  • Larney FJ, Hao X (2007) A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada. Bioresour Technol 98:3221–3227

    Article  PubMed  CAS  Google Scholar 

  • Mathur SP, Owen G, Dinel H, Schnitzer M (1993) Determination of compost biomaturity. 1. Literature review. Biol Agric Hortic 10:87–108

    Article  Google Scholar 

  • Metcalf, Eddy Inc. (1991) Wastewater engineering: treatment, disposal and reuse, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Miller FC (1992) Composting as a process based on the control of ecologically selective factors. In: Metting FB Jr (ed) Soil microbial ecology, applications in agricultural and environmental management. Marcel Dekker Inc., New York, pp 515–544

    Google Scholar 

  • Moral R, Paredes C, Bustamente MA, Marhuenda-Egea F, Bernal MP (2009) Utilisation of manure composts by high-value crops: safety and environmental challenges. Bioresour Technol 100:5454–5460

    Article  PubMed  CAS  Google Scholar 

  • Morel JL, Colin F, Germon JC, Godin P, Juste C (1985) Methods for the evaluation of the maturity of municipal refuse compost. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier Applied Science Publications, Barking, pp 56–72

    Google Scholar 

  • Namkoong W, Hwang EY, Cheong JG, Choi JY (1999) A comparative evaluation of maturity parameters for food waste composting. Compost Sci Util 7:55–62

    Article  Google Scholar 

  • Pereira-Neta JT (1987) On the treatment of municipal refuse and sewage sludge using aerated static pile composting—a low-cost technology approach. Ph.D. dissertation, Leeds University, UK

    Google Scholar 

  • Petkova G, Kostov O (1996) Microbiological processes under vine-twig composting. Pochvo Agrok Ekol 31(5):25–28

    Google Scholar 

  • Poincelot RP (1974) A scientific examination of the principals and practice if composting. Compost Sci 15:24–31

    CAS  Google Scholar 

  • Raj D, Antil RS (2011) Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour Technol 102:2868–2873

    Article  PubMed  CAS  Google Scholar 

  • Raj D, Antil RS (2012a) Phytotoxicity evaluation and response of wheat to agro-industrial waste composts. Arch Agron Soil Sci 58:73–84

    Article  Google Scholar 

  • Raj D, Antil RS (2012b) Evaluation of maturity and stability parameters of composts prepared from farm wastes. Arch Agron Soil Sci 58:817–832

    Article  CAS  Google Scholar 

  • Ranalli G, Botturea G, Taddei P, Garavni M, Marchetti R, Sorlini G (2001) Composting of solid and sludge residues from agricultural and food industries. Bioindicators of monitoring and compost maturity. J Environ Sci Health 36:415–436

    Article  CAS  Google Scholar 

  • Roig A, Lax A, Gegarra J, Costa T, Harnandez MT (1988) Cation exchange capacity as a parameter for measuring the humification degree of manures. Soil Sci 146:311–316

    Article  CAS  Google Scholar 

  • Roletto E, Barberis R, Consiglio M, Jodice R (1985) Chemical parameters for evaluating compost maturity. BioCycle 9:46–48

    Google Scholar 

  • Sasaay AA, Lasaridi K, Stentiford E, Budd T (1997) Controlled composting of paper sludge using the aerated static pile method. Compost Sci Util 5:82–96

    Article  Google Scholar 

  • Satisha GC, Devarajan L (2007) Effect of amendments on windrow composting of sugar industry pressmud. Waste Manage 27:1083–1091

    Article  CAS  Google Scholar 

  • Saviozzi A, Levi-Minzi R, Riffaldi R (1988) Maturity evaluation of organic wastes. BioCycle 29:54–56

    Google Scholar 

  • Sellami F, Hachicha S, Chtourou M, Medhioub K, Ammar E (2008) Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresour Technol 99:6900–6907

    Article  PubMed  CAS  Google Scholar 

  • Senesi N (1989) Composted materials as organic fertilisers. Sci Total Environ (81/82):521–542

    Article  Google Scholar 

  • Singh CP, Amberger A (1990) Humic substances in straw compost with rock phosphate. Biol Waste 31:165–174

    Article  CAS  Google Scholar 

  • Singh CP, Ruhal DS, Singh MS (1987) The solubilization of low grade rock phosphate with anaerobic digested slurry. Int Biodeterior 23:249–256

    Article  CAS  Google Scholar 

  • Stickelberger D (1975) Survey if city refuse composting. In: Organic matters as fertilizers. Swedish International Development Authority, FAO, Soils Bulletin. 27, Rome, pp 185–209

    Google Scholar 

  • Sugahara K, Harada Y, Inoko A (1979) Color change of city refuse during composting process. Soil Science Plant Nutr 25:197–208

    Article  Google Scholar 

  • Tang JC, Maie N, Tada Y, Katayama A (2006) Characteristics of the maturing process of cattle manure compost. Process Biochem 41:380–389

    Article  CAS  Google Scholar 

  • Tiquia SM, Tam NFY, Hodgkiss IJ (1996) Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Envrion Pollut 93:249–256

    Article  CAS  Google Scholar 

  • Tiquia SM, Tam NFY, Hodgkiss IJ (1997) Effect of turning frequency on composting of spent pig-manure sawdust litter. Bioresour Technol 62:37–42

    Article  CAS  Google Scholar 

  • TMECC (2002) Test methods for the examination of composting and compost. US Composting Council, Bethesda

    Google Scholar 

  • Vander Hoeck KW, Oosthoeck J (1985) Composting odour emission and odour control by biofiltration. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier Applied Science Publishers, London, pp 271–279

    Google Scholar 

  • Vuorinen AH, Saharinen MH (1997) Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. J Agric Ecosyst Environ 66:19–29

    Article  Google Scholar 

  • Wang P, Changa CM, Watson ME, Dick WA, Chen Y, Hoitink HAJ (2004) Maturity indices for composted dairy and pig manures. Soil Biol Biochem 36:767–776

    Article  CAS  Google Scholar 

  • Wu L, Ma LQ, Martinez GA (2000) Comparison of methods for evaluating stability and maturity of biosolids composts. J Environ Qual 29:424–429

    Article  CAS  Google Scholar 

  • Zucconi F, de Bertoldi M (1987) Compost specification for the production and characterization of compost from municipal solid waste. In: De Berfoldi M, Feerranti MP, Hermite PL, Zucconi F (eds) Compost: production, quality and use. Elsevier, Barking, pp 30–50

    Google Scholar 

  • Zucconi F, Pera A, Forte M, de Bertoldi M (1981) Evaluating toxicity of immature compost. BioCycle 22:54–57

    Google Scholar 

  • Zucconi F, Monaco CA, Forte M, de Bertoldi M (1985) Phytotoxins during the stabilization of organic matter. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier Applied Science Publishers, Barking, pp 73–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Singh Antil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antil, R., Raj, D., Abdalla, N., Inubushi, K. (2014). Physical, Chemical and Biological Parameters for Compost Maturity Assessment: A Review. In: Maheshwari, D. (eds) Composting for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-08004-8_5

Download citation

Publish with us

Policies and ethics