Skip to main content

Ecological Intensification through Nutrients Recycling and Composting in Organic Farming

  • Chapter
  • First Online:
Composting for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 3))

Abstract

In organic agriculture fertilizers are permitted in organic forms, as defined by regulation. Mineralization of organic fertilizers is a biological decomposition that release plants’ available nutrients; hence soil microbial communities are vital in the organic cropping systems. Composting microorganisms can work for the farmer’s benefit recycling agricultural organic wastes into materials that contribute to healthy and biologically active soil. Composting process has been deeply described to highlight the link among starting mixture, process factors and final resulting compost. Composting and crop residues incorporation are fundamental to recycle resources at farm level to improve the nutrients use efficiency and to decrease the off-farm input needs. In the organic farming a balanced combination of compost application and crop residues incorporation increases the microbial carbon use efficiency, which regulates the soil organic matter decomposition and nutrients mineralization resulting both to increase the yield and to decrease the negative impact on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abawi GS, Widmer TL (2000) Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15:37–47

    Article  Google Scholar 

  • Adani F, Tambone F, Genevini P (2009) Effect of compost application rate on C degradation and retention in soils. Waste Manage 29:174–179

    Article  Google Scholar 

  • Albiach R, Canet R, Pomares F, Ingelmo F (2000) Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour Technol 75:43–48

    Article  CAS  Google Scholar 

  • Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93(1):1–24

    Article  Google Scholar 

  • Altieri MA (2007) Fatal harvest: old and new dimensions of the ecological tragedy of modern agriculture. In: Nemetz PN (ed) Sustainable resource management: reality or illuison? Edward Elgar Publishing Ltd., Cheltenham, pp 189–213

    Google Scholar 

  • Araújo ASF, Santos VB, Monteiro RTR (2008) Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí state, Brazil. Euro J Soil Biol 44(2):225–230

    Article  Google Scholar 

  • Atkinson CF, Jones DD, Gauthier JJ (1996) Putative anaerobic activity in aerated composts. J Indian Microbiol 16(3):182–188

    Article  CAS  Google Scholar 

  • Barreveld WH (1989) Rural use of lignocellulosic residues, vol. 75. Food and Agricultural Organization, Rome. ISBN 92–5-102792-7

    Google Scholar 

  • Beffa T, Blanc M, Marilley L, Fisher JL, Lyon PF (1996) Taxonomic and metabolic microbial diversity during composting. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The sciences of composting. Blackie Academic and Professional, Glasgow, pp 149–161

    Google Scholar 

  • Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev 87:52–71

    Article  PubMed  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin, p 286. (ISBN 978–3-642-38820-0)

    Book  Google Scholar 

  • Bernal-Vicente A, Ros M, Tittarelli F, Intrigliolo F, Pascual JA (2008) Citrus compost as an organic substrate in growing media for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects. Bioresour Technol 99:8722–8728

    Article  PubMed  CAS  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2012) Ecological intensification: harnessing ecosystem services for food security. Trend Ecol Evol 28(4):230–238

    Article  Google Scholar 

  • Bosatta E, Staaf H (1982) The control of N turn-over in forest litter. Oikos 39:143–151

    Article  CAS  Google Scholar 

  • Breitenbeck GA, Schellinger D (2004) Calculating the reduction in material mass and volume during composting. Compost Sci Util 12(4):365–371

    Article  Google Scholar 

  • Campitelli P, Ceppi S (2008) Chemical, physical and biological compost and vermicompost characterization: a chemometric study. Chemomet Intell Lab Syst 90:64–71

    Article  CAS  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO J Human Environ 31(2):132–140

    Google Scholar 

  • Chandler JA, Jewell WJ, Gossett JM, Soest PJ Van, Robertson JB (1979) Predicting methane fermentation biodegradability. Biotechnol Bioeng Symp (16th edn.), 10:93–107

    Google Scholar 

  • Chen Y, Inbar Y, Hadar Y (1992) Compost residues reduce peat and pesticide use. Biocycle J Compos Organ recycl 33:48–51

    CAS  Google Scholar 

  • Chu H, Fujii T, Morimoto S, Lin X, Yagi K, Hu J, Zhang J (2007) Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl Environ Microbiol 73(2):485–491

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85(3):235–252

    Article  Google Scholar 

  • Cooperband L (2002) The art and science of composting: a resource for farmers and compost producers. Center for integrated agricultural systems. http://www.cias.wisc.edu/wpcontent/uploads/2008/07/artofcompost.pdf. Accessed 4 Aug 2013

  • d’Annunzio R, Zeller B, Nicolas M, Dhôte JF, Saint-André L (2008) Decomposition of European beech (Fagus sylvatica) litter: combining quality theory and 15N labelling experiments. Soil Biol Biochem 40(2):322–333

    Article  Google Scholar 

  • Debosz K, Rasmussen PH, Pedersen AR (1999) Temporaral variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input. Appl Soil Ecol 13:209–218

    Article  Google Scholar 

  • Debosz K, Petersen SO, Kure LK, Ambus P (2002) Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl Soil Ecol 19:237–248

    Article  Google Scholar 

  • Dillon JL, Anderson JR (1990) The analysis of response in crop and livestock production. Pergamon, New York

    Google Scholar 

  • Dobermann AR (2005) Nitrogen use efficiency—state of the art. Agronomy and horticulture—faculty publications. http://digitalcommons.unl.edu/agronomyfacpub/316. Accessed 4 Aug 2013

  • Duong TTT, Baumann K, Marschner P (2009) Frequent addition of wheat straw residues to soil enhances carbon mineralization rate. Soil Biol Biochem 41(7):1475–1482

    Article  CAS  Google Scholar 

  • Enwall K, Philippot L, Hallin S (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71(12):8335–8343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Epstein E (1997) The science of composting. CRC, Boca Raton

    Google Scholar 

  • Feinstein MS, Morris ML (1975) Microbiology of municipal solid waste composting. Adv Appl Microbiol 19:113–151

    Article  Google Scholar 

  • Fernández JM, Plaza C, García-Gil JC, Polo A (2009) Biochemical properties and barley yield in a semiarid Mediterranean soil amended with two kinds of sewage sludge. Appl Soil Ecol 42:18–24

    Article  Google Scholar 

  • Fließbach A, Mäder P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768

    Article  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstro J, Sheehan J, Siebert S, Tilman D, Zaks PM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  PubMed  CAS  Google Scholar 

  • Francis C, Lieblein G, Gliessman S, Breland TA, Creamer N, Harwood R, Poincelot R (2003) Agroecology: the ecology of food systems. J Sust Agric 22(3):99–118

    Article  Google Scholar 

  • Frost PC, Benstead JP, Cross WF, Hillebrand H, Larson JH, Xenopoulos MA, Yoshida T (2006) Threshold elemental ratios of C and phosphorus in aquatic consumers. Ecol Lett 9(7):774–779

    Article  PubMed  Google Scholar 

  • Fuchs JG (2010) Interactions between beneficial and harmful microorganisms: From the composting process to compost application. In: Insam H, Franke-Whittle I, Goberna, M (eds) Microbes at work. Springer, Berlin

    Google Scholar 

  • Garcia-Prendes R (2001) Evaluation of dairy manure compost as a peat substitute in potting media for container grown plants. Ph. D. Thesis, University of Florida

    Google Scholar 

  • Gould GW (2006) History of science–spores. J Appl Microbiol 101(3):507–513

    Article  PubMed  CAS  Google Scholar 

  • Goulding K, Jarvis S, Whitmore A (2008) Optimizing nutrient management for farm systems. Philos Trans Royal Soc B Biol Sci 363(1491):667–680

    Article  CAS  Google Scholar 

  • Goyal S, Dhull SK, Kapoor KK (2005) Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour Technol 96:1584–1591

    Article  PubMed  CAS  Google Scholar 

  • Haug RT (1993) The practical handbook of compost engineering. Lewis Publishers, Boca Raton

    Google Scholar 

  • Hermann RF, Shann JF (1997) Microbial community changes during the composting of municipal solid waste. Microb Ecol 33:78–85

    Article  Google Scholar 

  • Höper H, Alabouvette C (1996) Importance of physical and chemical soil properties in the suppressiveness of soils to plant diseases. Euro J Soil Biol 32(1):41–58

    Google Scholar 

  • Huber B, Schmid O, Kilcher L (2009) Standards and regulations. In: Willer H, Yussefi-Menzler M, Sorensen N (eds) The world of organic agriculture, statistics and emerging trends: IFOAM. Bonn, FiBL, Frick, ITC, Genf

    Google Scholar 

  • Insam H, de Bertoldi M (2007) Microbiology of the composting process. In: Diaz LF, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) compost science and technology. Waste management series 8. Elsevier, Amsterdam

    Google Scholar 

  • International Panel on Climate Change (IPCC) (2000) Land use, land use change and forestry. A special report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • International Panel on Climate Change (IPCC) (2001) Climate change: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Keshvan PC, Swaminathan MS (2006) From green revolution to evergreen revolution: pathways and terminologies. Curr Sci 91(2):145–146

    Google Scholar 

  • Kirchmann H, Kätterer T, Bergström L (2008) Nutrient supply in organic agriculture—plant availability, sources and recycling. In: Kirchmann H, Bergström L (eds) Organic crop production—ambitions and limitations. Springer, Dordrecht, pp 89–116

    Google Scholar 

  • Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17(4):40

    Google Scholar 

  • Kumar S, Pandey P, Maheshwari DK (2009) Reduction in dose of chemical fertilizers and growth enhancement of Sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Euro J Soil Biol 45:334–340

    Article  CAS  Google Scholar 

  • Kumar S, Aeron A, Pandey P, Maheshwari DK (2011) Ecofriendly management of charcoal rot and Fusarium wilt disease in Sesame (Sesamum indicum L). In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystem. Springer, Heidelberg, pp 387–406

    Google Scholar 

  • Kutzner HJ (2001) Microbiology of composting. In: Rehm HJ, Reed G, Pühler A (eds) Biotechnology Vol. 11c: environmental processes III. Wiley-VCH, Weinheim

    Google Scholar 

  • Lal R (2005) World crop residues production and implication of its use as a biofuel. Environ Int 31:575–586

    Article  PubMed  CAS  Google Scholar 

  • Lampkin N (1990) Organic farming. Farming Press Books, Ipswich

    Google Scholar 

  • Larsen KL, McCartney DM (2000) Effect of C: N ratio on microbial activity and N retention: bench-scale study using pulp and paper biosolids. Compost Sci Util 8(2):147–159

    Article  Google Scholar 

  • Lhadi EK, Tazi H, Aylaj M, Genevini PL, Adani F (2006) Organic matter evolution during co-composting of the organic fraction of municipal solid waste and poultry manure. Bioresour Technol 97:2117–2123

    Article  PubMed  CAS  Google Scholar 

  • Liebig J (1840) Chemistry in its application to agriculture and physiology. Taylor and Walton, London

    Google Scholar 

  • Luttikholt LW (2007) Principles of organic agriculture as formulated by the international federation of organic agriculture movements. NJAS-Wageningen J Life Sci 54(4):347–360

    Article  Google Scholar 

  • Maene LM (2000) The 10th world food prize congress, Washington DC, pp 169–171

    Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter N mineralization. Science 321(5889):684–686

    Article  PubMed  CAS  Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) Soil organic matter genesis: microbial biomass as a significant source. Biogeochemistry 111(1–3):41–55

    Article  CAS  Google Scholar 

  • Moorhead DL, Lashermes G, Sinsabaugh RL (2012) A theoretical model of C-and N-acquiring exoenzyme activities, which balances microbial demands during decomposition. Soil Biol Biochem 53:133–141

    Article  CAS  Google Scholar 

  • Müller-Lindenlauf M (2009) Organic agriculture and carbon sequestration. Possibilities and constrains for the consideration of organic agriculture within carbon accounting systems. Natural Resources Management and Environment Department, Food and Agriculture Organization of the United Nations, Rome. ftp://ftp.fao.org/docrep/fao/012/ak998e/ak998e00.pdf. Accessed 4 Aug 2013

  • Oades JM (1984) Soil Oraganic matter and structural stability mechanisms and implications for management. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Pascual JA, Hernández MT, García C, Lerma S, Lynch JM (2002) Effectiveness of municipal solid waste compost and its humic fraction in suppressing Pythium ultimum. Microb Ecol 44:59–68

    Article  PubMed  CAS  Google Scholar 

  • Perucci P, Dumontet S, Bufo SA, Mazzatura A, Casucci C (2000) Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol Fertil Soils 32:17–23

    Article  CAS  Google Scholar 

  • Rebollido R, Martinez J, Aguilera Y, Melchor K, Koerner I, Stegmann R (2008) Microbial populations during composting process of organic fraction of municipal solid waste. Appl Ecol Environ Res 6(3):61–67

    Article  Google Scholar 

  • Richard TL, Woodbury PB (1992) The impact of separation on heavy metal contaminants in municipal solid waste composts. Biomass Bioenergy 3:195–211

    Article  CAS  Google Scholar 

  • Richard TL, Hamelers HVM (Bert), Veeken A, Silva T (2002) Moisture relationship in composting processes. Compost Sci Util 10:286–302

    Article  Google Scholar 

  • Rivero C, Chirenje T, Ma LQ, Martinez G (2004) Influence of compost on soil Organic matter quality under tropical conditions. Geoderma 123:355–361

    Article  CAS  Google Scholar 

  • Ros M, Klammer S, Knapp B, Aichnerger K, Insam H (2006) Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manage 22:209–218

    Article  Google Scholar 

  • Rosenani AB, Mubarak AR, Zauyah S (2003) Recycling of crop residues for sustainable crop production in a maize-groundnut rotation system. IAEA Book: Management of Crop Residues for Sustainable Crop Production, pp 3–22. http://www-pub.iaea.org/MTCD/publications/PDF/te_1354_web.pdf. Accessed 4 Aug

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53:349–410

    Google Scholar 

  • Shen W, Lin X, Gao N, Zhang H, Yin R, Shi W, Duan Z (2008) Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta. Plant Soil 306(1–2):117–127

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modeling. Ecol Lett 16(7):930–939

    Article  PubMed  Google Scholar 

  • Smil V (1999) Crop residues: Agriculture’s largest harvest crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience 49:299–308

    Article  Google Scholar 

  • Suarez-Estrella F, Vargas-Garcia C, Lopez MJ, Capel C, Moreno J (2007) Antagonsitic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Protect 26:46–53

    Article  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresource Technol 72(2):169–183

    Article  CAS  Google Scholar 

  • Vigil MF, Kissel DE (1995) Rate of nitrogen mineralized from incorporated crop residues as influenced by temperature. Soil Sci Soc Am J 59(6):1636–1644

    Article  CAS  Google Scholar 

  • Wardle DA, Ghani AA (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27(12):1601–1610

    Article  CAS  Google Scholar 

  • Wiegel J, Tanner R, Rainey FA (2006) An introduction to the family Clostridiaceae. In: Dworkin M, Falkow S (eds) The prokaryotes. Springer, US, 4:654–678

    Google Scholar 

  • Yamamoto N, Otawa K, Nakai Y (2009) Bacterial communities developing during composting processes in animal manure treatment facilities. Asian Australian J Anim Sci 22:900–905

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco G. Ceglie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ceglie, F., Abdelrahman, H. (2014). Ecological Intensification through Nutrients Recycling and Composting in Organic Farming. In: Maheshwari, D. (eds) Composting for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-08004-8_1

Download citation

Publish with us

Policies and ethics