Skip to main content

Energy and Exergy Analyses of an Active Magnetic Refrigerator

  • Chapter
  • First Online:
Progress in Sustainable Energy Technologies Vol II

Abstract

In this paper, a thermodynamic model for predicting the performance of active magnetic refrigerator (AMR) is developed using energy and exergy analyses. Through this model, the cooling power, total power consumption, as well as the coefficient of performance (COP), exergy efficiency and exergy destruction rates of an AMR are determined. The effects of increasing mass flow rate on the COP, exergy efficiency and exergy destruction rates of the system are investigated. The results are presented to show that when mass flow rate increases, the COP and exergy efficiency curves reach their maximum values and then slightly decreases with increasing mass flow rate. The rate of exergy destruction increases with increasing mass flow rate due to the pump power requirements. The numerical results show that in order to reach optimal performance, mass flow rate must be adjusted carefully regarding to different operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganjehsarabi H, Dincer I, Gungor A (2013) Thermodynamic analysis and performance assessment of a cascade active magnetic regenerative refrigeration system. Int J Air Cond Ref 21(3):1350016.1–1350016.10

    Article  Google Scholar 

  2. Barclay JA, Steyert WA (1982) Active magnetic regenerator. US patent No. 4332135, 1982

    Google Scholar 

  3. Brown GV (1976) Magnetic heat pumping near temperature. J Appl Phys 47:3673–3680

    Article  Google Scholar 

  4. Aprea C, Greco A, Maiorino A (2013) A dimensionless numerical analysis for the optimization of an active magnetic regenerative refrigerant cycle. Int J Energy Res 37:1475–1487

    Article  Google Scholar 

  5. Aprea C, Greco A, Maiorino A (2011) A numerical analysis of an active magnetic regenerative cascade system. Int J Energy Res 35:177–188

    Article  Google Scholar 

  6. Tagliafico G, Scarpa F, Tagliafico LA (2010) A dynamic 1-D model for a reciprocating active magnetic regenerator; influence of the main working parameters. Int J Refrig 33(2):286–293

    Article  Google Scholar 

  7. Yu B, Liu M, Egolf PW, Kitanovski A (2010) A review of magnetic refrigerator and heat pump prototypes built before 2010. Int J Refrig 33(6):1029–1060

    Article  Google Scholar 

  8. Arnold DS, Tura A, Ruebsaat-Trott A, Rowe A (2014) Design improvements of a permanent magnet active magnetic refrigerator. Int J Refrig 37:99–105

    Article  Google Scholar 

  9. Lozano JA, Engelbrecht K, Bahl CRH, Nielsen KK, Eriksen D, Barbosa JR, Smith A, Prata AT, Pryds N, Olsen UL (2013) Performance analysis of a rotary active magnetic refrigerator. Appl Energy 111:669–680

    Article  Google Scholar 

  10. Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S, Fukamichi K (2006) Design and performance of a permanent-magnet rotary refrigerator. Int J Refrig 29:1302–1306

    Article  Google Scholar 

  11. Okamura T, Yamada K, Hirano N, Nagaya S (2006) Performance of a room temperature rotary magnetic refrigerator. Int J Refrig 29:1327–1331

    Article  Google Scholar 

  12. Hall JL, Reid CE, Spearing IG, Barclay JA (1996) Thermodynamic considerations for the design of active magnetic regenerative refrigerators. Adv Cryogenic Eng 41:1653–1663

    Article  Google Scholar 

  13. Rosario L, Rahman M (2010) Analysis of a magnetic refrigerator. Appl Therm Eng 31:1082–1090

    Article  Google Scholar 

  14. Rohsenow WM, Hartnett JP, Ganic ENI (1985) Handbook of heat transfer, vol 6. McGraw-Hill, New York, NY, pp 10–11

    Google Scholar 

  15. Kaviany M (1995) Principles of heat transfer in porous media. Springer, New York, NY

    Book  MATH  Google Scholar 

  16. Ganjehsarabi H, Dincer I, Gungor A (2014) Exergoeconomic analysis of a cascade active magnetic regenerative refrigeration system. Progress in exergy, energy, and the environment. 69–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Dincer .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

Ac:

Cross-sectional area m2

asf :

Specific surface area m2/m3

c:

Specific heat J kg K−1

COP:

Coefficient of performance

D:

Diameter of the regenerator section m

dP :

Diameter of the particles μm

\( \dot{\mathrm{E}}\mathrm{x} \) :

Exergy flow rate (W)

h:

Convection coefficient (W m−2 K−1)

H:

Magnetic field A m−1

Hmax :

Maximum magnetic field A m−1

k:

Thermal conductivity W m−1 K−1

L:

Length of the regenerator m

m:

Mass kg

\( \dot{\mathrm{m}} \) :

Mass flow rate kg s−1

M:

Magnetic intensity A m−1

Nu:

Nusselt number

Pr:

Prandtl number

\( \dot{Q} \) :

Heat transfer rate, W

Re:

Reynolds number dimensionless

s:

Specific entropy (J kg−1 K−1)

t:

Time coordinate s

t1 :

Magnetization time step (s)

t2 :

Isofield cooling time step (s)

t3 :

Demagnetization time step (s)

t4 :

Isofield heating time step (s)

T:

Temperature K

u:

Local velocity m/s

V:

Volume L

X:

Axial position m

\( \dot{W} \) :

Work kJ s−1

ΔP:

Pressure drop Pa

ε :

Porosity of the regenerator bed

μ 0 :

Permeability of free space (m kg s−2 A−2)

ρ :

Density kg m−3

η :

Efficiency (−)

ad:

Adiabatic

C:

Cooling

D:

Demagnetization

des:

Destruction

ex:

Exergy

f:

Fluid

H:

Rejection

M:

Magnetic

P:

Pump

s:

Solid

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganjehsarabi, H., Dincer, I., Gungor, A. (2014). Energy and Exergy Analyses of an Active Magnetic Refrigerator. In: Dincer, I., Midilli, A., Kucuk, H. (eds) Progress in Sustainable Energy Technologies Vol II. Springer, Cham. https://doi.org/10.1007/978-3-319-07977-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07977-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07976-9

  • Online ISBN: 978-3-319-07977-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics