Skip to main content

Audio Watermarking Techniques

  • Chapter
  • First Online:
Audio Watermark

Abstract

In recent years, there has been considerable interest in the development of audio watermarking techniques. To clarify the essential principles underlying a diversity of sophisticated algorithms, this chapter gives an overview of basic methods for audio watermarking, such as least significant bit (LSB) modification, phase coding, spread spectrum watermarking, cepstrum domain watermarking, wavelet domain watermarking, echo hiding, and histogram-based watermarking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    EBU: The European Broadcasting Union; SQAM: Sound Quality Assessment Material.

  2. 2.

    In general, stereo audio watermarking depends on some kind of relation between two channels [80], so it can only apply to stereo signals. However, mono audio watermarking can commonly treat one stereo channel as two mono channels, so it supports both mono and stereo audio signals.

  3. 3.

    Adobe Audition is a powerful digital audio recorder, editor, and mixer for Windows. It can perform a lot of operations, such as resampling, requantization, amplitude scaling, reverberation, MPEG compression, time stretching, and pitch shifting, on various formats of audio files,.au,.voc,.vox,.wav, and so on.

  4. 4.

    The reverberation time of a room is the time that it takes for sound to decay by a certain level α dB once the source of sound has stopped [30]. T 60 is when α = 60 dB.

  5. 5.

    Based on extensive operations with Adobe Audition v3.0, it is found that an amount of 1,201 samples is added to the beginning of an audio file.

  6. 6.

    Two categories are named as the host-interference nonrejecting method and the host-interference rejecting method respectively in [35, 83, 84].

  7. 7.

    Note that two of the ODGs in Table 3.1 are slightly positive, i.e., 0.13 and 0.03. According to its definition, the ODG should normally be in the range [\(-- 4\), 0]. However, if the distortion caused by watermarking is very low, then the cognitive model calculates positive values. In such cases, it is interpreted that the distortion is mostly inaudible for humans [38].

  8. 8.

    Despite the fact that only a portion of bits are extracted, the corresponding BER is always calculated for performance evaluations.

References

  1. H. Malik, R. Ansari, A. Khokhar, Robust audio watermarking using frequency-selective spread spectrum. IET Inform. Secur. 2(4), 129–150 (2008)

    Article  Google Scholar 

  2. S.J. Xiang, H.J. Kim, J.W. Huang, Audio watermarking robust against time-scale modification and mp3 compression. Signal Process. 88(10), 2372–2387 (2008)

    Article  MATH  Google Scholar 

  3. O.T.-C. Chen, W.-C. Wu, Highly robust, secure, and perceptual-quality echo hiding scheme. IEEE Trans. Audio Speech Lang. Process. 16(3), 629–638 (2008)

    Article  Google Scholar 

  4. X. He, Watermarking in Audio: Key Techniques and Technologies (Cambria Press, Youngstown, 2008)

    Google Scholar 

  5. N. Cvejic, T. Seppanen, Robust audio watermarking in wavelet domain using frequency hopping and patchwork method, in Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003, pp. 251–255

    Google Scholar 

  6. D. Kirovsk, H.S. Malvar, Spread-spectrum watermarking of audio signals. IEEE Trans. Signal Process. 51(4), 1020–1033 (2003)

    Article  MathSciNet  Google Scholar 

  7. R. Tachibana, S. Shimizu, S. Kobayashi, An audio watermarking method using a two-dimensional pseudo-random array. Signal Process. 82(10), 1455–1469 (2002)

    Article  MATH  Google Scholar 

  8. N. Cvejic, T. Seppanen (eds.), Digital Audio Watermarking Techniques and Technologies: Applications and Benchmarks (Information Science Reference, Hershey, 2008)

    Google Scholar 

  9. M. Arnold, M. Schmucker, S.D. Wolthusen, Techniques and Applications of Digital Watermarking and Content Protection (Artech House, Boston, 2003)

    Google Scholar 

  10. C.-P. Wu, P.-C. Su, C.-C.J. Kuo, Robust and efficient digital audio watermarking using audio content analysis, in Proceedings of SPIE Security and Watermarking of Multimedia Contents II, vol. 3971, 2000, pp. 382–392

    Google Scholar 

  11. S.J. Xiang, J.W. Huang, Histogram-based audio watermarking against time-scale modification and cropping attacks. IEEE Trans. Multimed. 9(7), 1357–1372 (2007)

    Article  Google Scholar 

  12. W. Bender, D. Gruhl, N. Morimoto, A. Lu, Techniques for data hiding. IBM Syst. J. 35(3 & 4), 313–336 (1996)

    Article  Google Scholar 

  13. A. Lang, J. Dittmann, Transparency and complexity benchmarking of audio watermarking algorithms issues, in Proceedings of Workshop on Multimedia and Security, 2006, pp. 190–201

    Google Scholar 

  14. P. Kabal, An examination and interpretation of ITU-R BS.1387: Perceptual evaluation of audio quality. Technical Report, TSP Lab, McGill University (2003) [Online], http://www-mmsp.ece.mcgill.ca/Documents

  15. M. Bosi, R.E. Goldberg, Introduction to Digital Audio Coding and Standards (Kluwer Academic, Boston, 2003)

    Book  Google Scholar 

  16. SQAM - Sound Quality Assessment Material, European Broadcasting Union (EBU) [Online], http://sound.media.mit.edu/mpeg4/audio/sqam

  17. A. Takahashi, R. Nishimura, Y. Suzuki, Multiple watermarks for stereo audio signals using phase-modulation techniques. IEEE Trans. Signal Process. 53(2), 806–815 (2005)

    Article  MathSciNet  Google Scholar 

  18. P. Liew, M. Armand, Inaudible watermarking via phase manipulation of random frequencies. Multimed. Tools Appl. 35(3), 357–377 (2007)

    Article  Google Scholar 

  19. A. Piva, M. Barni, F. Bartolini, A. De Rosa, Data hiding technologies for digital radiography. IEE Proc. Vision Image Signal Process. 152(5), 604–610 (2005)

    Article  Google Scholar 

  20. B. Chen, G.W. Wornell, Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inform. Theory 47(4), 1423–1443 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Zaidi, R. Boyer, P. Duhamel, Audio watermarking under desynchronization and additive noise attacks. IEEE Trans. Signal Process. 54(2), 570–584 (2006)

    Article  Google Scholar 

  22. D. Lam, Audio watermarking. COMPSYS401A Project, The University of Auckland, 2003

    Google Scholar 

  23. S. Saito, T. Furukawa, K. Konishi, A digital watermarking for audio data using band division based on QMF bank, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 4, 2002, pp. 3473–3476

    Google Scholar 

  24. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Prentice Hall, Englewood Cliffs, 1989)

    MATH  Google Scholar 

  25. S.-S. Kuo, J.D. Johnston, W. Turin, S.R. Quackenbush, Covert audio watermarking using perceptually tuned signal independent multiband phase modulation. Proc. ICASSP 2, 1753–1756 (2002)

    Google Scholar 

  26. I.J. Cox, J. Kilian, F.T. Leighton, T. Shamoon, Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)

    Article  Google Scholar 

  27. H.J. Kim, Audio watermarking techniques, in Proceedings of Pacific Rim Workshop on Digital Steganography, 2003

    Google Scholar 

  28. H. Malik, A. Khokhar, A. Rashid, Robust audio watermarking using frequency selective spread spectrum theory. Proc. ICASSP 5, 385–388 (2004)

    Google Scholar 

  29. N. Cvejic, T. Seppanen, Spread spectrum audio watermarking using frequency hopping and attack characterization. Signal Process. 84(1), 207–213 (2004)

    Article  MATH  Google Scholar 

  30. J. Seok, J. Hong, J. Kim, A novel audio watermarking algorithm for copyright protection of digital audio. ETRI J. 24(3), 181–189 (2002)

    Article  Google Scholar 

  31. L.R. Rabiner, R.W. Schafer, Digital Processing of Speech Signals (Prentice Hall, Englewood Cliffs, 1978)

    Google Scholar 

  32. X. Li, H.H. Yu, Transparent and robust audio data hiding in cepstrum domain, in Proceedings of IEEE International Conference on Multimedia and Expo (ICME), vol. 1, 2000, pp. 397–400

    Google Scholar 

  33. S.-K. Lee, Y.-S. Ho, Digital audio watermarking in the cepstrum domain. IEEE Trans. Consumer Electron. 46(3), 744–750 (2000)

    Article  MathSciNet  Google Scholar 

  34. C.-T. Hsieh, P.-Y. Sou, Blind cepstrum domain audio watermarking based on time energy features, in Proceedings of International Conference on Digital Signal Processing (DSP), vol. 2, 2002, pp. 705–708

    Google Scholar 

  35. L.L. Cui, S.X. Wang, T.F. Sun, The application of binary image in digital audio watermarking, in Proceedings of International Conference on Neural Networks and Signal Processing, vol. 2, 2003, pp. 1497–1500

    Google Scholar 

  36. K. Gopalan, Audio steganography by cepstrum modification. Proc. ICASSP 5, 481–484 (2005)

    Google Scholar 

  37. K. K. Parhi, T. Nishitani, Digital Signal Processing for Multimedia Systems (CRC Press, New York, 1999)

    Google Scholar 

  38. W.Y. Hwang, H.I. Kang, S.S. Han, K.I. Kim, H.S. Kang, Robust audio watermarking using both DWT and masking effect, in Digital Watermarking, LNCS 2939, ed. by T. Kalker et al. (Springer, Berlin/Heidelberg, 2004), pp. 382–389

    Chapter  Google Scholar 

  39. A. Prochazka, J. Uhlir, P.W.J. Rayner, N.G. Kingsbury, Signal Analysis and Prediction (Birkhäuser, Boston, 1998)

    Book  MATH  Google Scholar 

  40. X. He, M.S. Scordilis, An enhanced psychoacoustic model based on the discrete wavelet packet transform. J. Franklin Inst. 343(7), 738–755 (2006)

    Article  MATH  Google Scholar 

  41. C.-S. Ko, K.-Y. Kim, R.-W. Hwang, Y.-S. Kim, S.-B. Rhee, Robust audio watermarking in wavelet domain using pseudorandom sequences, in Proceedings of Annual International Conference on Computer and Information Science (ACIS), 2005, pp. 397–401

    Google Scholar 

  42. P. Artameeyanant, Wavelet audio watermark robust against MPEG compression, in SICE Annual Conference, pp. 1414–1417, 2007

    Google Scholar 

  43. H.O. Kim, B.K. Lee, N. Lee, Wavelet-based audio watermarking techniques: robustness and fast synchronization [Online], http://amath.kaist.ac.kr/research/paper/01-11.pdf

  44. W. Li, X.Y. Xue, An audio watermarking technique that is robust against random cropping. Comput. Music J. 27(4), 58–68 (2003)

    Article  Google Scholar 

  45. H.O. Oh, J.W. Seok, J.W. Hong, D.H. Youn, New echo embedding technique for robust and imperceptible audio watermarking. Proc. ICASSP 3, 1341–1344 (2001)

    Google Scholar 

  46. D. Gruhl, A. Lu, W. Bender, Echo hiding, in Information Hiding, ed.b y R. Anderson. Lecture Notes in Computer Science, vol. 1174 (Springer, Berlin/Heidelberg, 1996), pp. 295–315

    Google Scholar 

  47. H.J. Kim,Y.H. Choi, A novel echo-hiding scheme with backward and forward kernels. IEEE Trans. Circ. Syst. Video Tech. 13(8), 885–889 (2003)

    Article  Google Scholar 

  48. B.-S. Ko, R. Nishimura, Y. Suzuki, Time-spread echo method for digital audio watermarking. IEEE Trans. Multimed. 7(2), 212–221 (2005)

    Article  Google Scholar 

  49. B.-S. Ko, R. Nishimura, Y. Suzuki, Log-scaling watermark detection in digital audio watermarking. Proc. ICASSP 3, 81–84 (2004)

    Google Scholar 

  50. D. Coltuc, P. Bolon, Robust watermarking by histogram specification, in Proceedings of International Conference on Image Processing (ICIP), vol. 2, 1999, pp. 236–239

    Google Scholar 

  51. M. Mese, P.P. Vaidyanathan, Optimal histogram modification with MSE metric. Proc. ICASSP 3, 1665–1668 (2001)

    Google Scholar 

  52. E. Chrysochos, V. Fotopoulos, A.N. Skodras, M. Xenos, Reversible image watermarking based on histogram modification, in Proceedings of the 11th Panhellenic Conference on Informatics (PCI), vol. B, 2007, pp. 93–104

    Google Scholar 

  53. G.R. Xuan, Q.M. Yao, C.Y. Yang, J.J. Gao, P.Q. Chai, Y. Shi, Z.C. Ni, Lossless data hiding using histogram shifting method based on integer wavelets, in Digital Watermarking, ed. by Y.Q. Shi, B. Jeon. Lecture Notes in Computer Science, vol. 4283 (Springer, Berlin/Heidelberg, 2006), pp. 323–332

    Google Scholar 

  54. S.J. Xiang, J.W. Huang, R. Yang, Time-scale invariant audio watermarking based on the statistical features in time domain, in Information Hiding, ed. by J. Camenisch et al. Lecture Notes in Computer Science, vol. 4437 (Springer, Berlin/Heidelberg,, 2007), pp. 93–108. Matlab implementation available at http://cist.korea.ac.kr/xiangshijun/

  55. D.R. Smith, Digital Transmission Systems (Kluwer Academic, Boston, 2004)

    Book  Google Scholar 

  56. H. Farid, Detecting hidden messages using higher-order statistical models. Proc. ICIP 2, 905–908 (2002)

    Google Scholar 

  57. M. Alghoniemy, A.H. Tewfik, Image watermarking by moment invariants. Proc. ICIP 2, 73–76 (2000)

    Google Scholar 

  58. S.J. Xiang, J.W. Huang, R. Yang, C.T. Wang, H.M. Liu, Robust audio watermarking based on low-order zernike moments, in Digital Watermarking, ed. by Y.Q. Shi, B. Jeon. Lecture Notes in Computer Science, vol. 4283 (Springer, Berlin/Heidelberg, 2006), pp. 226–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, Y., Abdulla, W.H. (2015). Audio Watermarking Techniques. In: Audio Watermark. Springer, Cham. https://doi.org/10.1007/978-3-319-07974-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07974-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07973-8

  • Online ISBN: 978-3-319-07974-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics