Advertisement

Relativistic Two-Fluid Formalism

  • Andreas Schmitt
Chapter
  • 2k Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 888)

Abstract

What is the relation between the relativistic field-theoretical approach of the previous chapter and the two-fluid formalism explained in chap.  2? The answer to this question is not obvious because the two-fluid formalism developed for superfluid helium is manifestly non-relativistic, as one can see for example from the use of mass densities ρ s , ρ n . Since mass is not a conserved quantity, these densities have to be generalized in a relativistic framework.

Keywords

Rest Frame Generalize Pressure Conjugate Momentum Normal Fluid Superfluid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, Phys. Rev. D87, 065001 (2013)ADSGoogle Scholar
  2. 2.
    M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, Phys. Rev. D89, 085005 (2014)ADSGoogle Scholar
  3. 3.
    J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    N. Andersson, G. Comer, Living Rev. Rel. 10, 1 (2007)Google Scholar
  5. 5.
    J. Annett, Superconductivity, Superfluids, and Condensates (Oxford University Press, New York, 2004)Google Scholar
  6. 6.
    C. Barceló, S. Liberati, M. Visser, Living Rev. Relat. 8, 12 (2005)ADSGoogle Scholar
  7. 7.
    B. Carter, in Relativistic Fluid Dynamics (Noto 1987), ed. by A. Anile, M. Choquet-Bruhat (Springer, Berlin, 1989), pp. 1–64Google Scholar
  8. 8.
    B. Carter, I.M. Khalatnikov, Phys. Rev. D45, 4536 (1992)ADSMathSciNetGoogle Scholar
  9. 9.
    B. Carter, D. Langlois, Phys. Rev. D51, 5855 (1995)ADSGoogle Scholar
  10. 10.
    G. Comer, R. Joynt, Phys. Rev. D68, 023002 (2003)ADSGoogle Scholar
  11. 11.
    C. Herzog, P. Kovtun, D. Son, Phys. Rev. D79, 066002 (2009)ADSMathSciNetGoogle Scholar
  12. 12.
    I.M. Khalatnikov, V.V. Lebedev, Phys. Lett. A 91, 70 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    V.V. Lebedev, I.M. Khalatnikov, Zh. Eksp. Teor. Fiz. 83, 1601 (1982). [Sov. Phys. JETP, 56, 923 (1982)]Google Scholar
  14. 14.
    M. Mannarelli, C. Manuel, Phys. Rev. D77, 103014 (2008)ADSGoogle Scholar
  15. 15.
    A. Nicolis, eprint arXiv:1108.2513 (2011)Google Scholar
  16. 16.
    D. Son, eprint arXiv:hep-ph/0204199 (2002)Google Scholar
  17. 17.
    S. Stringari, eprint arXiv:cond-mat/0101299 (2001)Google Scholar
  18. 18.
    W. Unruh, Phys. Rev. Lett. 46, 1351 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    V.I. Yukalov, Phys. Part. Nucl. 42, 460 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andreas Schmitt
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität WienWienAustria

Personalised recommendations