Advertisement

Superfluidity in Quantum Field Theory

  • Andreas Schmitt
Chapter
  • 2k Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 888)

Abstract

The theoretical treatment of superfluid helium used in the previous section was phenomenological in the sense that the microscopic degrees of freedom, the helium atoms, never appeared in our description. We took it as given that there is a gapless excitation, and we modelled its form in terms of phonons and rotons, if you wish because experiments tell us so.

Keywords

Helium Atom Spontaneous Symmetry Breaking Bose Condensate Goldstone Mode Superfluid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Annett, Superconductivity, Superfluids, and Condensates (Oxford University Press, New York, 2004)Google Scholar
  2. 2.
    ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    T. Brauner, Symmetry 2, 609 (2010)CrossRefMathSciNetGoogle Scholar
  4. 4.
    CMS Collaboration, Phys. Lett. B 716, 30 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    R. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  6. 6.
    E.P. Gross, Il Nuovo Cimento Ser. 10 20, 454 (1961)Google Scholar
  7. 7.
    H.E. Haber, H.A. Weldon, Phys. Rev. Lett. 46, 1497 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    J. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, New York, 2006)CrossRefGoogle Scholar
  9. 9.
    V. Miransky, I. Shovkovy, Phys. Rev. Lett. 88, 111601 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    H.B. Nielsen, S. Chadha, Nucl. Phys. B 105, 445 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    P. Nozières, D. Pines, The Theory of Quantum Liquids (Perseus Books, Cambridge, 1999)Google Scholar
  12. 12.
    L. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)MathSciNetGoogle Scholar
  13. 13.
    S. Pokorsky, Gauge Field Theories (Cambridge University Press, Cambridge, 2000)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    H. Watanabe, T. Brauner, Phys. Rev. D84, 125013 (2011)ADSGoogle Scholar
  16. 16.
    H. Watanabe, H. Murayama, Phys. Rev. Lett. 108, 251602 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H. Watanabe, H. Murayama, eprint arXiv:1402.7066 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andreas Schmitt
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität WienWienAustria

Personalised recommendations