Advertisement

Introduction

  • Andreas Schmitt
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 888)

Abstract

Superfluidity was first observed in liquid helium. The key experiment was the study of flow through a thin capillary, and the key observation was that the fluid flows without friction. Hence the name superfluid. What is behind this phenomenon? Does it only occur in liquid helium? If not, where else? To generalize the specific observation of frictionless flow, we notice that in order to observe a flow, something is transported through the capillary.

Keywords

Liquid Helium Helium Atom Quark Matter Compact Star Goldstone Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Abuki, Nucl. Phys. A791, 117 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, Phys. Rev. D87, 065001 (2013)ADSGoogle Scholar
  3. 3.
    M. Alford, K. Rajagopal, JHEP 0206, 031 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    M.G. Alford, A. Schmitt, K. Rajagopal, T. Schäfer, Rev. Mod. Phys. 80, 1455 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    M. Alford, Q.h. Wang, J. Phys. G31, 719 (2005)Google Scholar
  6. 6.
    J. Annett, Superconductivity, Superfluids, and Condensates (Oxford University Press, New York, 2004)Google Scholar
  7. 7.
    J. Bardeen, L. Cooper, J. Schrieffer, Phys. Rev. 106, 162 (1957)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    B. Carter, in Relativistic Fluid Dynamics (Noto 1987), ed. by A. Anile, M. Choquet-Bruhat (Springer, New York, 1989), pp. 1–64Google Scholar
  9. 9.
    B. Carter, I.M. Khalatnikov, Phys. Rev. D45, 4536 (1992)ADSMathSciNetGoogle Scholar
  10. 10.
    B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962)ADSCrossRefGoogle Scholar
  11. 11.
    A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962)ADSCrossRefGoogle Scholar
  12. 12.
    J. Deng, A. Schmitt, Q. Wang, Phys. Rev. D76, 034013 (2007)ADSGoogle Scholar
  13. 13.
    R.B. Diener, R. Sensarma, M. Randeria, Phys. Rev. A77, 023626 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    A. Fetter, J. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)Google Scholar
  15. 15.
    K. Fukushima, K. Iida, Phys. Rev. D71, 074011 (2005)ADSGoogle Scholar
  16. 16.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    E. Gubankova, M. Mannarelli, R. Sharma, Ann. Phys. 325, 1987 (2010)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    H. Guo, C.C. Chien, Y. He, Nucl. Phys. A 823, 83 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    L. He, S. Mao, P. Zhuang, Int. J. Mod. Phys. A28, 1330054 (2013)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, New York, 2006)CrossRefGoogle Scholar
  21. 21.
    W. Ketterle, M.W. Zwierlein, Nuovo Cimento Riv. Ser. 31, 247 (2008)ADSGoogle Scholar
  22. 22.
    I. Khalatnikov, An Introduction to the Theory of Superfluidity (Addison-Wesley, New York, 1989)Google Scholar
  23. 23.
    I.M. Khalatnikov, V.V. Lebedev, Phys. Lett. A 91, 70 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    L. Landau, E. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980)Google Scholar
  25. 25.
    M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 2000)Google Scholar
  26. 26.
    V.V. Lebedev, I.M. Khalatnikov, Zh. Eksp. Teor. Fiz. 83, 1601 (1982). [Sov. Phys. JETP, 56, 923 (1982)]Google Scholar
  27. 27.
    K. Levin, Q. Chen, C.C. Chien, Y. He, Ann. Phys. 325, 233 (2010)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Y. Nishida, H. Abuki, Phys. Rev. D72, 096004 (2005)ADSGoogle Scholar
  29. 29.
    P. Nozières, D. Pines, The Theory of Quantum Liquids (Perseus Books, Cambridge, 1999)Google Scholar
  30. 30.
    D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner, eprint arXiv:1302.6626 (2013)Google Scholar
  31. 31.
    D. Page, S. Reddy, Ann. Rev. Nucl. Part. Sci. 56, 327 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    G.B. Partridge, W. Li, R.I. Kamar, Y.a. Liao, R.G. Hulet, Science 311, 503 (2006)Google Scholar
  33. 33.
    R.D. Pisarski, D.H. Rischke, Phys. Rev. D60, 094013 (1999)ADSGoogle Scholar
  34. 34.
    S. Pokorsky, Gauge Field Theories (Cambridge University Press, Cambridge, 2000)CrossRefGoogle Scholar
  35. 35.
    F. Preis, A. Rebhan, A. Schmitt, Lect. Notes Phys. 871, 51 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    L. Radzihovsky, D.E. Sheehy, Rep. Prog. Phys. 73, 076501 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    K. Rajagopal, A. Schmitt, Phys. Rev. D73, 045003 (2006)ADSGoogle Scholar
  38. 38.
    D.H. Rischke, Phys. Rev. D62, 034007 (2000)ADSGoogle Scholar
  39. 39.
    D.H. Rischke, Phys. Rev. D62, 054017 (2000)ADSGoogle Scholar
  40. 40.
    A.M.J. Schakel, Ann. Phys. 326, 193 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    A. Schmitt, Lect. Notes Phys. 811, 1 (2010)CrossRefGoogle Scholar
  42. 42.
  43. 43.
    A. Schmitt, Q. Wang, D.H. Rischke, Phys. Rev. D69, 094017 (2004)ADSGoogle Scholar
  44. 44.
    M. Srednicki, Quantum Field Theory (Cambridge University Press, Cambridge, 2007)CrossRefzbMATHGoogle Scholar
  45. 45.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996)Google Scholar
  46. 46.
    D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Taylor & Francis, London, 1990)Google Scholar
  47. 47.
    W. Zwerger (ed.), The BCS-BEC Crossover and the Unitary Fermi Gas, Lecture Notes in Physics, vol. 836 (Springer, Berlin, 2012)Google Scholar
  48. 48.
    M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311, 492 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andreas Schmitt
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität WienWienAustria

Personalised recommendations