Skip to main content

Introduction to Manufacturing of Natural Fibre-Reinforced Polymer Composites

  • Chapter
Manufacturing of Natural Fibre Reinforced Polymer Composites

Abstract

In the recent era, different environmental issues have significantly influenced the innovations in material science and technology. The burgeoning demand for clean environment has led the innovation of green materials and utilization of natural materials. Thus, the urge for the production of high-performance engineering products from natural renewable resource is growing day by day. Composites are among those versatile, high-performance materials which combine the unique mechanical and thermal properties that cannot be achieved in a single material. In the recent decade, scientists continued to explore the potential of natural fibres as the reinforcing phase for polymer composites. The important driving force for such emergence of utilizing natural resources is that they are renewable and biodegradable and impose no adverse effects on environment, whereas petroleum-based products are limited and cause environmental problems. This review gives the state-of-the-art overview on currently developed natural fibre-reinforced polymer composites focusing on structure–property relationship of fibres, different polymer matrices used to develop composites, their mechanical performances, different composite fabrication techniques, and the application of such composites in different areas. Critical issues of biocomposites have also been discussed along with their advantages and disadvantages. This article also summarized the critical issues in the manufacturing of natural fibre composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Sharkh BF, Hamid H (2004) Degradation study of date palm fiber/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polym Degrad Stab 85(3):967–973

    Article  CAS  Google Scholar 

  • AlMaadeed MA, Nogellova Z, Mičušík M, Novak I, Krupa I (2014) Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder. Mater Des 53:29–37

    Article  CAS  Google Scholar 

  • Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7(1):9

    CAS  Google Scholar 

  • Bhat NV, Seshadri DT, Nate MM, Gore AV (2006) Development of conductive cotton fabrics for heating devices. J Appl Polym Sci 102(5):4690–4695

    Article  CAS  Google Scholar 

  • Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibers—a comparative study to PP. Compos Sci Technol 70(12):1687–1696

    Article  CAS  Google Scholar 

  • Błędzki A, Urbaniak M, Jaszkiewicz A, Feldmann M (2014) Włóknacelulozowejakoalternatywadlawłókienszklanych w kompozytachpolimerowych. Polimery 59

    Google Scholar 

  • Birgitha N (2007) Natural fiber composites optimization of microstructure and processing parameters. Thesis

    Google Scholar 

  • Brushwood DE (1988) Effects of heating on chemical and physical properties and processing quality of cotton. Text Res J 58(6):309–317

    CAS  Google Scholar 

  • Burger H, Koine A, Maron R, Mieck KP (1995) Gummi FaserKunststoffe 48:475

    Google Scholar 

  • Cámer JG, Morales J, Sánchez L (2008) Nano-Si/cellulose composites as anode materials for lithium-ion batteries. Electrochem Solid State Lett 11(6):A101–A104

    Article  Google Scholar 

  • Chapple S, Anandjiwala R (2010) Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater 23(6):871–893

    Article  CAS  Google Scholar 

  • Darie RN, Bercea M, Kozlowski M, Spiridon I (2011) Evaluation of properties of LDPE/oak wood composites exposed to artificial ageing. Cellulose Chem Technol 45(1–2):127–135

    CAS  Google Scholar 

  • Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A 56:280–289

    Article  CAS  Google Scholar 

  • Elkhaoulani A, Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Mater Des 49:203–208; Engineering. 2014(53):760–766

    Google Scholar 

  • Essabir E, Elkhaoulani A, Benmoussa K, Bouhfid R, Arrakhiz FZ, Qaiss A (2013) Dynamic mechanical behavior analysis of doum fibers reinforced polypropylene composites. Mater Des 51:780–788

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26

    Article  CAS  Google Scholar 

  • Feldmann M, Bledzki AK (2014) Bio-based polyamides reinforced with cellulosic fibers—processing and properties. Compos Sci Technol 100:113–120

    Article  CAS  Google Scholar 

  • Ferland P, Guittard D, Trochu F (1996) Concurrent methods for permeability measurement in resin transfer molding. Polym Compos 17(1):149–158

    Google Scholar 

  • Ganster J, Fink HP (2010) PLA-based bio-and nanocomposites. Nano Biocompos 275–290

    Google Scholar 

  • Gassan J, Bledzki AK (2001) Thermal degradation of flax and jute fibers. J Appl Polym Sci 82(6):1417–1422

    Article  CAS  Google Scholar 

  • Gejo G, Kuruvilla J, Boudenne A, Sabu T (2010) Recent advances in green composites. Key Eng Mater 425:107–166

    Article  Google Scholar 

  • George M, Mussone PG, Bressler DC (2014) Surface and thermal characterization of natural fibers treated with enzymes. Ind Crops Prod 53:365–373

    Article  CAS  Google Scholar 

  • Graff G (2005) Under-hood applications of nylon accelerate. Retrieved from Omnexus Web: http://www.omnexus.com/resources/articles/article.aspx?id=9660

  • Graupner N, Herrmann AS, Müssig J (2009) Natural and man-made cellulose fiber-reinforced poly (lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A Appl Sci Manuf 40(6):810–821

    Article  Google Scholar 

  • Haque MM, Islam MS, Islam MN, Huque MM, Hasan M (2010a) Physico-mechanical properties of chemically treated palm fiber reinforced polypropylene composites. J Reinforc Plast Compos 29(11):1734–1742

    Article  CAS  Google Scholar 

  • Haque MM, Rahman MR, Islam MN, Huque MM, Hasan M (2010b) Physico-mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber. J Reinforc Plast Compos 29(15):2253–2261

    Article  CAS  Google Scholar 

  • Herrera-Franco PJ, Drzal LT (1992) Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites 23(1):2–27

    Google Scholar 

  • Ho MP, Wang H, Lee JH, Ho CK, Lau KT, Leng J, Hui D (2012a) Critical factors on manufacturing processes of natural fiber composites. Compos Part B Eng 43(8):3549–3562

    Article  CAS  Google Scholar 

  • Ho M, Wang H, Lee JH, Ho CK, Lau K, Leng J, Hui D (2012b) Critical factors on manufacturing processes of natural fiber composites. Compos Part B 43:3549–3562. https://bangladesheconomy.wordpress.com/2010/04/09/local-researchers-develop-jute-made-substitute-for-ci-sheet/

  • Huda MS, Drzal LT, Misra M, Mohanty AK, Williams K, Mielewski DF (2005a) A study on biocomposites from recycled newspaper fiber and poly (lactic acid). Ind Eng Chem Res 44(15):5593–5601

    Google Scholar 

  • Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005b) “Green” composites from recycled cellulose and poly (lactic acid): physico-mechanical and morphological properties evaluation. J Mater Sci 40(16):4221–4229

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Misra M, Mohanty AK (2006a) Wood‐fiber‐reinforced poly (lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2006b) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66(11):1813–1824

    Article  CAS  Google Scholar 

  • Ikegawa N, Hamada H, Maekawa Z (1996) Effect of compression process on void behavior in structural resin transfer molding. Polym Eng Sci 36(7):953–962

    Article  CAS  Google Scholar 

  • Irimia-Vladu M (2014) “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 43(2):588–610

    Article  CAS  PubMed  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber‐reinforced composites. Polym Compos 29(2):187–207

    Article  CAS  Google Scholar 

  • John M, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  • John J, Ann Mani S, Palaniswamy K, Ramanathan A, Razak AAA (2014) Flexural properties of poly (methyl methacrylate) resin reinforced with oil palm empty fruit bunch fibers: a preliminary finding. J Prosthodont

    Google Scholar 

  • Johnson RW, Evans JL, Jacobsen P, Thompson JR, Christopher M (2004) The changing automotive environment: high-temperature electronics. IEEE Trans Electr Packaging Manuf 27(3):164–176

    Article  Google Scholar 

  • Joseph PV, Rabello MS, Mattoso LHC, Joseph K, Thomas S (2002) Environmental effects on the degradation behaviour of sisal fiber reinforced polypropylene composites. Compos Sci Technol 62(10):1357–1372

    Google Scholar 

  • Kakou CA, Arrakhiz FZ, Trokourey A, Bouhfid R, Qaiss A, Rodrigue D (2014) Influence of coupling agent content on the properties of high density polyethylene composites reinforced with oil palm fibers. Mater Des 63:641–649

    Article  CAS  Google Scholar 

  • Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL (2013) Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J Environ Chem Eng 1(3):97–112

    Article  CAS  Google Scholar 

  • Karim R, Rahman Md, Hasan FM, Islam MdS, Hassan A (2013) Effect of fiber loading and alkali treatment on physical and mechanical properties of chemically treated bagasse fiber reinforced polypropylene composites. J Polym Mater 30(4):423–433

    Google Scholar 

  • Khan MA, Hassan MM (2006) Effect of γ‐aminopropyltrimethoxysilane on the performance of jute–polycarbonate composites. J Appl Polym Sci 100(5):4142–4154

    Article  CAS  Google Scholar 

  • Khan MA, Hinrichsen G, Drzal LT (2001) Influence of novel coupling agents on mechanical properties of jute reinforced polypropylene composite. J Mater Sci Lett 20(18):1711–1713

    Article  CAS  Google Scholar 

  • Khan MA, Rahman MM, Akhunzada KS (2002) Grafting of different monomers onto jute yarn by in situ UV-radiation method: effect of additives. Polym Plast Technol Eng 41(4):677–689

    Google Scholar 

  • Khan MA, Masudul Hassan M, Drzal LT (2005) Effect of 2-hydroxyethyl methacrylate (HEMA) on the mechanical and thermal properties of jute-polycarbonate composite. Compos Part A Appl Sci Manuf 36(1):71–81

    Article  Google Scholar 

  • Khan MA, Khan RA, Hossain A, Khan AH (2008) Effect of gamma radiation on the physico-mechanical and electrical properties of jute fiber-reinforced polypropylene composites. J Reinforc Plast Compos

    Google Scholar 

  • Khan RA, Khan MA, Khan AH, Hossain MA (2009a) Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites. Radiat Phys Chem 78(11):986–993

    Article  Google Scholar 

  • Khan RA, Khan MA, Sultana S, Khan MN, Shubhra QT, Noor FG (2009b) Mechanical, degradation, and interfacial properties of synthetic degradable fiber reinforced polypropylene composites. J Reinforc Plast Compos

    Google Scholar 

  • Khan MA, Khan RA, Haydar UZ, Noor-A-Alam M, Hoque MA (2010a) Effect of surface modification of jute with acrylic monomers on the performance of polypropylene composites. J Reinforc Plast Compos 29(8):1195–1205

    Article  CAS  Google Scholar 

  • Khan AH, Hossain MA, Khan MA, Khan RA, Hakim MA (2010b) Fabrication and characterization of jute reinforced polypropylene composite: effectiveness of coupling agents. J Compos Mater

    Google Scholar 

  • Khan RA, Khan MA, Zaman HU, Pervin S, Khan N, Sultana S, Mustafa AI (2010c) Comparative studies of mechanical and interfacial properties between jute and e-glass fiber-reinforced polypropylene composites. J Reinforc Plast Compos 29(7):1078–1088

    Article  CAS  Google Scholar 

  • Kim SK, Daniel IM (2003) Determination of three-dimensional permeability of fiber preforms by the inverse parameter estimation technique. Compos Part A Appl Sci Manuf 34(5):421–429

    Article  Google Scholar 

  • Kim KW, Lee BH, Kim S, Kim HJ, Yun JH, Yoo SE, Sohn JR (2011) Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior. J Hazard Mater 187(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Konyushenko EN, Kazantseva NE, Stejskal J, Trchová M, Kovářová J, Sapurina I, Prokeš J (2008) Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles. J Magnetism Magn Mater 320(3):231–240

    Article  CAS  Google Scholar 

  • Kuribayashi I, Yokoyama M, Yamashita M (1995) Battery characteristics with various carbonaceous materials. J Power Sources 54(1):1–5

    Article  CAS  Google Scholar 

  • Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A Appl Sci Manuf 37(1):80–91

    Article  CAS  Google Scholar 

  • Mallick PK (1993) Fiber-reinforced composites: materials, manufacturing, and design. CRC Press

    Google Scholar 

  • Mohanty AK, Patnaik S, Singh BC, Misra M (1989) Graft copolymerization of acrylonitrile onto acetylated jute fibers. J Appl Polym Sci 37(5):1171–1181

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(1):1–24

    Article  Google Scholar 

  • Nahar S (2014) Modification and characterization of technical bamboo fiber and their polypropylene based composites. Ph.D. thesis, Bangladesh University of Engineering and Technology, Bangladesh

    Google Scholar 

  • Nair KC, Diwan SM, Thomas S (1996) Tensile properties of short sisal fiber reinforced polystyrene composites. J Appl Polym Sci 60(9):1483–1497

    Google Scholar 

  • Nalwa HS (1997) Handbook of organic conductive molecules and polymers, vol 4: Conductive polymers: transport, photophysics and applications

    Google Scholar 

  • Oumer AN, Bachtiar D (2014) Modeling and experimental validation of tensile properties of sugar palm fiber reinforced high impact polystyrene composites. Fibers Polym 15(2):334–339

    Article  CAS  Google Scholar 

  • Ozen E, Kiziltas A, Kiziltas EE, Gardner DJ (2013) Natural fiber blend—nylon 6 composites. Polym Compos 34(4):544–553

    Article  CAS  Google Scholar 

  • Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295(11):975–989

    Article  CAS  Google Scholar 

  • Petinakis E, Yu L, Simon GP, Dai XJ, Chen Z, Dean K (2014) Interfacial adhesion in natural fiber‐reinforced polymer composites. Lignocellulosic polymer composites: processing, characterization, and properties, pp 17–39

    Google Scholar 

  • Pott GT, Van Deursen JH, Hueting DJ, Van der Wooning A (1999) A novel flax upgrading process for industrial applications. In: Proceedings of international symposium, WerkstoffeausnachwachsendenRohstoffen, Erfurt

    Google Scholar 

  • Pott GT, Hueting DJ, Van Deursen JH (2000) Reduction of moisture sensitivity in wood and natural fibers for polymer composites. In 3rd international wood and natural fiber composites symposium, Kassel

    Google Scholar 

  • Qaiss AEK, Bouhfid R, Essabir H (2014) Natural fibers reinforced polymeric matrix: thermal, mechanical and interfacial properties. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and Bioenergy. Springer, 2014, pp 225–245

    Google Scholar 

  • Rahman MR, Huque MM, Islam MN, Hasan M (2008) Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post treatment. Compos A Appl Sci Manuf 39:1739–1747

    Article  Google Scholar 

  • Ren W, Zhang D, Wang G, Cheng H (2014) Mechanical and thermal properties of bamboo pulp fiber reinforced polyethylene composites. BioResources 9(3):4117–4127

    Article  Google Scholar 

  • Rusznák I, Zimmer K (1971) Proceedings of the 18th Hungarian textile conference, Budapest 2, p 119

    Google Scholar 

  • Saheb DN, Jog JP (1999) Natural fibre polymer composites: a review. Adv Polym Technol 18(4):351–363

    Article  CAS  Google Scholar 

  • Sain S, Ray D, Mukhopadhyay A (2014a) Improved mechanical and moisture resistance property of in situ polymerized transparent PMMA/cellulose composites. Polym Compos

    Google Scholar 

  • Sain S, Sengupta S, Kar A, Mukhopadhyay A, Sengupta S, Kar T, Ray D (2014b) Effect of modified cellulose fibers on the biodegradation behaviour of in-situ formed PMMA/cellulose composites in soil environment: isolation and identification of the composite degrading fungus. Polym Degrad Stab 99:156–165

    Article  CAS  Google Scholar 

  • Salleh FM, Hassan A, Yahya R, Azzahari AD (2014) Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of Kenaf fiber/HDPE composites. Compos Part B 58:259–266

    Article  CAS  Google Scholar 

  • Sanadi AR, Calufield DF, Rowell RM (1994) Reinforcing polypropylene with natural fibers. Plast Eng (USA) 50(4):27–28

    CAS  Google Scholar 

  • Sapurina I, Kazantseva NE, Ryvkina NG, Prokeš J, Sáha P, Stejskal J (2005) Electromagnetic radiation shielding by composites of conducting polymers and wood. J Appl Polym Sci 95(4):807–814

    Article  CAS  Google Scholar 

  • Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34(9):982–1021

    Article  CAS  Google Scholar 

  • Shekeil YAE, Sapuan SM, Jawaid M, Shuja’a OMA (2014) Influence of fiber content on mechanical, morphological and thermal properties of Kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater Des 58:130–135

    Article  Google Scholar 

  • Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics, PRO-BIP, Final Report, Utrecht, The Netherlands

    Google Scholar 

  • Shukor F, Hassan A, Hasan M, Islam MdS, Mokhtar M (2014a) PLA/Kenaf/APP biocomposites: effect of alkali treatment and ammonium polyphosphate (APP) on dynamic mechanical and morphological properties. Polym Plast Technol Eng 53:760–766

    Google Scholar 

  • Shukor F, Hassan A, Saiful Islam Md, Mokhtar M, Hasan M (2014b) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 54:425–429

    Google Scholar 

  • Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S (2007) A comparative study on mechanical properties of sisal-leaf fiber-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol 67(3):453–461

    Article  CAS  Google Scholar 

  • Taj S, Munawar MA, Khan SU (2007) Natural fibre-reinforced polymer composites. Proc Pakistan Acad Sci 44(2):129–144

    CAS  Google Scholar 

  • Tang L‐G, Kardos JL (1997) A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym Compos 18(1):100–113

    Google Scholar 

  • Thitithanasarn S, Yamada K, Ishiaku US, Hamada H (2012) The effect of curative concentration on thermal and mechanical properties of flexible epoxy coated jute fabric reinforced polyamide 6 composites. Open J Compos Mater 2(04):133

    Article  CAS  Google Scholar 

  • Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Compos Part B Eng 40(7):628–632

    Article  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibers: can they replace glass in fiber reinforced plastics? Compos Sci Technol 63(9):1259–1264

    Article  CAS  Google Scholar 

  • Warrior NA, Turner TA, Robitaille F, Rudd CD (2003) Effect of resin properties and processing parameters on crash energy absorbing composite structures made by RTM. Compos Part A 34:543–550

    Article  Google Scholar 

  • White JR (1985) On the layer removal analysis of residual stress. J Mater Sci 20(7):2377–2387

    Article  CAS  Google Scholar 

  • Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7(5–6):421–432

    Article  CAS  Google Scholar 

  • Zeronian SH (1977) In: Arthur JC (ed) Cellulose chemistry and technology. American Chemical Society, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enamul Hoque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arifur Rahman, M., Parvin, F., Hasan, M., Hoque, M.E. (2015). Introduction to Manufacturing of Natural Fibre-Reinforced Polymer Composites. In: Salit, M., Jawaid, M., Yusoff, N., Hoque, M. (eds) Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-07944-8_2

Download citation

Publish with us

Policies and ethics