Skip to main content

Processability of Wood Fibre-Filled Thermoplastic Composite Thin-Walled Parts Using Injection Moulding

  • Chapter
Manufacturing of Natural Fibre Reinforced Polymer Composites

Abstract

A review of research on injection-moulded wood fibre-filled thermoplastic composites is presented in this chapter. Brief description of injection-moulding compounding process (including drying and mixing and extrusion) as well as injection-moulding process itself is also presented. A review on wood fibre-reinforced thermoplastic composites is also reported. An in-depth discussion is presented on thin-part moulding and the formation of residual stresses, volumetric shrinkage and warpage using injection moulding for composite products. Simulation work and statistical analysis related to the topic are also reviewed. Finally, some ideas about further research on wood-filled thermoplastic composite are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (1995) Thinwall®. In technical guidebook for electronics applications. GE Plastics.

    Google Scholar 

  • Arif A, Fazal M (2003) Numerical prediction of plastic deformation and residual stresses induced by laser shock processing. J Mater Process Technol 136:120–138

    Article  Google Scholar 

  • Ashori A (2008) Wood-plastic composites as promising green-composites for automotive industries! Bioresour Technol 99:4661–4667

    Article  CAS  PubMed  Google Scholar 

  • Baaijens FPT (1991) Calculation of residual stresses in injection molded products. Rheol Acta 30:284–299

    Article  CAS  Google Scholar 

  • Bachtiar D, Sapuan SM, Hamdan MM (2010) Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. Int J Automot Mech Eng (IJAME) 1:79–90

    Article  CAS  Google Scholar 

  • Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Boitout F, Agassant JF, Vincent M (1995) Elastic calculation of residual stresses in injection molding – influence of mold deformation and pressure in the liquid. Int Polym Process 10:237–242

    Article  CAS  Google Scholar 

  • Carroll DR, Stone RB, Sirignano AM, Saindon RM, Gose SC, Friedman MA (2001) Structural properties of recycled plastic/sawdust lumber decking planks. Resour Conserv Recycl 31:241–251

    Article  Google Scholar 

  • Chen X, Lam YC, Li DQ (2000) Analysis of thermal residual stress in plastic injection molding. J Mater Process Technol 101:275–280

    Article  Google Scholar 

  • Chen CS, Chen TJ, Chien RD, Chen SC (2007) Investigation on the weldline strength of thin-wall injection molded ABS parts. Int Commun Heat Mass Tran 43(4):448–455

    Google Scholar 

  • Cheng XM, Zhou L, Sheng NY, Wu YD (2009) Injection molding and warpage of thin-walled parts based on simulated deformation. IEEE 2006:3–6

    Google Scholar 

  • Chiang KT (2007) The optimal process conditions of an injection-molded thermoplastic part with a thin shell feature using grey-fuzzy logic: a case study on machining the PC/ABS cell phone shell. Mater Des 28:1851–1860

    Article  CAS  Google Scholar 

  • Choi D, Im Y (1999) Prediction of shrinkage and warpage in consideration of residual stress in integrated simulation of injection molding. Compos Struct 47:655–665

    Article  Google Scholar 

  • Chris S (2014a) Roctool claims thin wall gains in electronics. Injection World by Applied Market Information Ltd, p 47

    Google Scholar 

  • Chris S (2014b) Xiaomi adopts LNP compounds for ultra-slim smartphone. Injection World by Applied Market Information Ltd, p 46

    Google Scholar 

  • Coutinho FMB, Costa THS, Carvalho DL (1997) Polypropylene–wood fiber composites: effect of treatment. J Appl Polym Sci 65:1227–1235

    Article  CAS  Google Scholar 

  • Davoodi MM, Sapuan SM, Ahmad D, Aidy A, Khalina A, Jonoobi M (2011) Concept selection of car bumper beam with developed hybrid bio-composite materials. Mater Des 32:4857–4865

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Peijs T (2009) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  Google Scholar 

  • El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2012) Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303

    Article  CAS  Google Scholar 

  • Fischer JM (2003) Handbook of molded part shrinkage and warpage. Plastics Design Library William Andrew, Inc., USA

    Google Scholar 

  • Giboz J, Copponnex T, Mélé P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17:R96–R109

    Article  CAS  Google Scholar 

  • Gould P (2002) Exploiting spider’s silk. Materialstoday, (December), 42–47

    Google Scholar 

  • Gu Y, Li H, Shen C (2001) Numerical simulation of thermally induced stress and warpage in injection-molded thermoplastics. Adv Polym Technol 20:14–21

    Article  CAS  Google Scholar 

  • Hambali A, Sapuan SM, Ismail N, Nukman Y (2009) Application of analytical hierarchy process in the design concept selection of automotive composite bumper beam during the conceptual design stage. Sci Res Essay 4:198–211

    Google Scholar 

  • Hambali A, Sapuan SM, Ismail N, Nukman Y (2010) Material selection of polymeric composite automotive bumper beam using analytical hierarchy process. J Cent South Univ Technol 17:244–256

    Article  CAS  Google Scholar 

  • Hastenberg CHV, Wildervanck PC, Leenen AJH (1992) The measurement of thermal stress distribution along the flow path in injection-molded flat plates. Polym Eng Sci 32:506–515

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  • Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) “Green” composites from recycled cellulose and poly(lactic acid): physico-mechanical. J Mater Sci 40:4221–4229

    Article  CAS  Google Scholar 

  • Isayev AI, Crouthamel DL (1984) Residual stress development in the injection moldings of polymers. Polym Plast Technol Eng 22:177–232

    Article  CAS  Google Scholar 

  • Isayev AI, Shyu GD, Li CT (2006) Residual stresses and birefringence in injection molding of amorphous polymers: simulation and comparison with experiment. J Polym Sci B Polym Phys 44:622–639

    Article  CAS  Google Scholar 

  • Ishak MR, Leman Z, Sapuan SM, Edeerozey AMM, Othman IS (2010) Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites. IOP Confer Series: Mater Sci Eng 11:012006

    Google Scholar 

  • Ishak MR, Sapuan SM, Leman Z, Rahman MZA, Anwar UMK (2012) Characterization of sugar palm (Arenga pinnata) fibres. J Therm Anal Calorim 109:981–989

    Article  CAS  Google Scholar 

  • Jacques MS (1982) An analysis of thermal warpage in injection molded at parts due to unbalanced cooling. Polym Eng Sci 22:241–245

    Article  Google Scholar 

  • Kabanemi KK, Crochet MJ (1992) Thermoviscoelastic calculation of residual stresses and residual shapes of injection molded parts. Int Polym Process 7:60–70

    Article  CAS  Google Scholar 

  • Kamal MR, Lai-Fook RA, Hernandez-Aguilar JR (2002) Residual thermal stresses in injection moldings of thermoplastics: a theoretical and experimental study. Polym Eng Sci 42:1098–1114

    Article  CAS  Google Scholar 

  • Kansal G, Rao PN, Atreya SK (2001) Study: temperature and residual stress in an injection moulded gear. J Mater Process Technol 108:328–337

    Article  Google Scholar 

  • Kim SK, Lee SW, Youn JR (2002) Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation. Korea Aust Rheol J14:107–114

    Google Scholar 

  • Kim KH, Isayev AI, Kwon K, van Sweden C (2005) Modeling and experimental study of birefringence in injection molding of semicrystalline polymers. Polymer 46:4183–4203

    Article  CAS  Google Scholar 

  • La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A Appl Sci Manuf 42:579–588

    Article  Google Scholar 

  • Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos A Appl Sci Manuf 37:80–91

    Article  CAS  Google Scholar 

  • Lee YB, Kwon TH, Yoon K (2002a) Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: Basic modeling and results for injection molding. Polym Eng Sci 42:2246–2272

    Article  CAS  Google Scholar 

  • Lee YB, Kwon TH, Yoon K (2002b) Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part II: Effects of processing conditions. Polym Eng Sci 42:2273–2292

    Article  CAS  Google Scholar 

  • Leman Z, Sapuan SM, Azwan M, Ahmad MMHM, Maleque MA (2008) The effect of environmental treatments on fiber surface properties and tensile strength of sugar palm fiber-reinforced epoxy composites. Polym Plast Technol Eng 47:606–615

    Article  CAS  Google Scholar 

  • Li TQ, Wolcott MP (2004) Rheology of HDPE–wood composites. I. Steady state shear and extensional flow. Compos A Appl Sci Manuf 35:303–311

    Article  Google Scholar 

  • Li TQ, Ng CN, Li RKY (2001) Impact behavior of sawdust/recycled – PP composites. J Appl Polym Sci 81:1420–1428

    Article  CAS  Google Scholar 

  • Liu SJ (1996) Modeling and simulation of thermally induced stress and warpage in injection molded thermoplastics. Polym Eng Sci 36:807–818

    Article  CAS  Google Scholar 

  • Lodha P, Netravali AN (2002) Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber. J Mater Sci 37:3657–3665

    Article  CAS  Google Scholar 

  • Lu X, Khim LS (2001) A statistical experimental study of the injection molding of optical lenses. J Mater Process Technol 113:189–195

    Article  Google Scholar 

  • Marsh G (2003) Next step for automotive materials. Mater Today April:36–43

    Google Scholar 

  • Maxwell AS (2005) Measurement of residual stress in plastics. DEPC (MN) 027

    Google Scholar 

  • Michaeli W, Potsch G (1995) Injection molding: an introduction. Hanser Publishers, New York

    Google Scholar 

  • Morreale M, Scaffaro R, Maio A, La Mantia FP (2008a) Effect of adding wood flour to the physical properties of a biodegradable polymer. Compos A Appl Sci Manuf 39:503–513

    Article  Google Scholar 

  • Morreale M, Scaffaro R, Maio A, La Mantia FP (2008b) Mechanical behaviour of Mater-Bi®/wood flour composites: a statistical approach. Compos A Appl Sci Manuf 39:1537–1546

    Article  Google Scholar 

  • Netravali AN, Chabba S (2003) Composites get greener. Mater Today April:22–29

    Google Scholar 

  • Nickel J, Riedel U (2003) Activities in biocomposites. Mater Today April:44–48

    Google Scholar 

  • Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286

    Article  CAS  Google Scholar 

  • Ozcelik B, Sonat I (2009) Warpage and structural analysis of thin shell plastic in the plastic injection molding. Mater Des 30:367–375

    Article  CAS  Google Scholar 

  • Park K, Kim B, Yao D (2006) Numerical simulation for injection molding with a rapidly heated mold, Part II: Birefringence prediction. Polym Plast Technol Eng 45:903–909

    Article  CAS  Google Scholar 

  • Plackett D, Andersen LT, Pedersen BW, Nielsen L (2003) Biodegradable composites based on l-polylactide and jute fibres. Compos Sci Technol 63:1287–1296

    Article  CAS  Google Scholar 

  • Powell CP, Housz IJA (1998) Engineering with polymers. Stanley Thornes Publishers, London

    Google Scholar 

  • Rangaprasad R (2003) Wood plastic composites – an overview. In: IPI seminar on synthetic wood, pp. 8 http://www.ipiindia.org/index.php?option=com_zoo&task=callelement&format=raw&item_id=1010&element=cf0577f3-519f-4fe3-9d25-658179076aff&method=download&Itemid=328

  • Rashdi AAA, Sapuan SM, Zainudin ES, Khalina A (2009) Water absorption and tensile properties of soil buried kenaf fibre reinforced unsaturated polyester composites (KFUPC). J Food Agric Environ 7:908–911

    CAS  Google Scholar 

  • Rotheiser JI (2002) Controlling warpage for the decorating and assembly of plastic parts. In: ANTEC, annual technical conference proceedings, conference 60, pp 3020–3023

    Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Sanadi A, Caulfield DF, Rowell RM (1998) Lignocellulosic/plastic composites. Technology Summaries, Madison, pp 8–13

    Google Scholar 

  • Sapuan SM, Abdalla HS (1998) A prototype knowledge-based system for the material selection of polymeric-based composites for automotive components. Compos A Appl Sci Manuf 29:731–742

    Article  Google Scholar 

  • Sapuan SM, Zan MNM, Zainudin ES, Arora PR (2005) Tensile and flexural strengths of coconut spathe-fibre reinforced epoxy composites. J Trop Agric 43:63–65

    Google Scholar 

  • Sastra HY, Siregar JP, Sapuan SM, Hamdan MM (2006) Tensile properties of Arenga pinnata fiber-reinforced epoxy composites. Polym Plast Technol Eng 45:149–155

    Article  CAS  Google Scholar 

  • Scaffaro R, Morreale M, Re GL, Mantia FPL (2009) Effect of the processing techniques on the properties of ecocomposites based on vegetable oil-derived mater-bi and wood flour. J Appl Polym Sci 114:2855–2863

    Article  CAS  Google Scholar 

  • Sen A, Bhattacharya M (2000) Residual stresses and density gradient in injection molded starch/synthetic polymer blends. Polymer 41:9177–9190

    Article  CAS  Google Scholar 

  • Shaharuddin SIS, Salit MS, Zainudin ES (2006) Review of the effect of moulding parameters on the performance of polymeric composite injection moulding. Turk J Eng Environ Sci 30:23–34

    Google Scholar 

  • Shen YK, Wu CW, Yu YF, Chung HW (2008) Analysis for optimal gate design of thin-walled injection molding. Int Commun Heat Mass Tran 35:728–734

    Article  CAS  Google Scholar 

  • Shoemaker J (2006) Moldflow design guide (a resource for plastic engineer). Hanser Gardner Publications Inc. 6915 Valley Avenue, Cincinnati, Ohio 45244–3029, USA, p 256

    Google Scholar 

  • Slaviero C, Weiss K, Woodman D (2001) Thinwall injection molding for instrument panels. In: SAE Technical Paper Series

    Google Scholar 

  • Song MC, Liu Z, Wang MJ, Yu TM, Zhao DY (2007) Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts. J Mater Process Technol 187–188:668–671

    Article  Google Scholar 

  • Struik LCE (1978) Orientation effects and cooling stresses in amorphous polymers. Polym Eng Sci 18:799–811

    Article  CAS  Google Scholar 

  • Suriani MJ, Hamdan MM, Sastra HY, Sapuan SM (2007) Study of interfacial adhesion of tensile specimens of Arenga pinnata fiber reinforced composites. Multidiscip Model Mater Struct 3:213–224

    Article  CAS  Google Scholar 

  • Tang SH, Tan YJ, Sapuan SM, Sulaiman S, Ismail N, Samin R (2007) The use of Taguchi method in the design of plastic injection mould for reducing warpage. J Mater Process Technol 182:418–426

    Article  CAS  Google Scholar 

  • Timothy AP (2001) Specializes molding techniques. In: Heim HP, Potente H (eds) 10 common pitfalls in thin wall plastic part design. Plastic Design Library, Norwich, p 107

    Google Scholar 

  • Wang TH, Young WB (2005) Study on residual stresses of thin-walled injection molding. Eur Polym J 41:2511–2517

    Article  CAS  Google Scholar 

  • Weng C (2010) Modelling and simulation of residual stresses and birefringence in the precision injection moulding of microlens arrays. UMI Dissertation Publishing, The Hong Kong Polytechnic University

    Google Scholar 

  • Willett JL (1994) Mechanical properties of LDPE/granular starch composites. J Appl Polym Sci 54:1685–1695

    Article  CAS  Google Scholar 

  • Williams JG (1981) On the prediction of residual stresses in polymers. Plast Rubber Process Appl 1:369–377

    CAS  Google Scholar 

  • Yusoff MZM, Salit MS, Ismail N, Wirawan R (2010) Mechanical properties of short random oil palm fibre reinforced epoxy composites. Sains Malaysiana 39:87–92

    CAS  Google Scholar 

  • Zainudin ES, Sapuan SM, Sulaiman S, Ahmad MMHM (2001) Fiber orientation of short fiber reinforced injection molded thermoplastic composites: a review. J Inject Mold Technol 6:1–10

    Google Scholar 

  • Zhang X, Cheng X, Stelson KA, Bhattacharya M, Sen A, Voller VR (2002) Approximate model of thermal residual stress in an injection molded part. J Therm Stresses 25:523–538

    Article  Google Scholar 

  • Zhou H, Li D (2005a) Numerical simulation and experimental study of warpage of injection-molded parts. Polym Plast Technol Eng 44:603–617

    Article  CAS  Google Scholar 

  • Zhou H, Li D (2005b) Residual stress analysis of the post-filling stage in injection moulding. Int J Adv Manuf Technol 25:700–704

    Article  Google Scholar 

  • Zhou H, Xi G, Liu F (2008) Residual stress simulation of injection molding. J Mater Eng Perform 17:422–427

    Article  CAS  Google Scholar 

  • Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32:1905–1915

    Article  CAS  Google Scholar 

  • Zoetelief WF, Douven LFA, Housz AJI (1996) Residual thermal stresses in injection molded products. Polym Eng Sci 36:1886–1896

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is funded by Universiti Putra Malaysia through Research University Grant Scheme with project number of UPM/700-1/2/RUGS/05-02-12-1917RU. The authors also acknowledge financial support from Universiti Malaysia Perlis for the principal author to carry out his PhD work at Universiti Putra Malaysia. The contribution of SIRIM Berhad and INTROP, UPM, is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Azaman, M.D., Sapuan, S.M., Sulaiman, S., Zainudin, E.S., Khalina, A. (2015). Processability of Wood Fibre-Filled Thermoplastic Composite Thin-Walled Parts Using Injection Moulding. In: Salit, M., Jawaid, M., Yusoff, N., Hoque, M. (eds) Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-07944-8_17

Download citation

Publish with us

Policies and ethics