Skip to main content

Ping-Pong Protocol Strengthening against Pavičić’s Attack

  • Conference paper
Computer Networks (CN 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 431))

Included in the following conference series:

Abstract

A quantum circuit providing an undetectable eavesdropping of information encoded by bit flip operations in Ping-Pong protocol has been recently proposed by Pavičić [Phys. Rev. A, vol. 87, pp. 042326, 2013]. A modification of the protocol’s control mode is proposed. The introduced improvement remedies deficiencies of the protocol seminal version and permits Pavičić’s attack detection with overwhelming probability. The improved version is also immune to famous Wójcik’s attack [Phys. Rev. Lett., vol. 90, pp. 157901, 2003]. As a result, the Ping-Pong protocol asymptotic security is restored both in perfect and lossy quantum channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kłosowski, P.: Speech processing application based on phonetics and phonology of the Polish language. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 236–244. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Kucharczyk, M.: Blind signatures in electronic voting systems. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 349–358. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Sułek, W.: Pipeline processing in low-density parity-check codes hardware decoder. B. Pol. Acad. Sci.-Tech. 59(2), 149–155 (2011)

    Google Scholar 

  4. Dustor, A., Kłosowski, P.: Biometric voice identification based on fuzzy kernel classifier. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 456–465. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Dziwoki, G., Kucharczyk, M., Sulek, W.: OFDM transmission with non-binary LDPC coding in wireless networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 222–231. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zawadzki, P.: A numerical simulation of quantum factorization success probability. In: Tkacz, E., Kapczynski, A. (eds.) Internet – Technical Development and Applications. AISC, vol. 64, pp. 223–231. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Zawadzki, P.: A fine estimate of quantum factorization success probability. Int. J. Quantum Inf. 8(8), 1233–1238 (2010)

    Article  MATH  Google Scholar 

  9. Izydorczyk, J., Izydorczyk, M.: Microprocessor scaling: What limits will hold? IEEE Computer 43(8), 20–26 (2010)

    Article  Google Scholar 

  10. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  Google Scholar 

  11. Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, W.Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  Google Scholar 

  12. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  Google Scholar 

  13. Boström, K., Felbinger, T.: On the security of the ping-pong protocol. Phys. Lett. A 372(22), 3953–3956 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Vasiliu, E.V.: Non-coherent attack on the Ping-Pong protocol with completely entangled pairs of qutrits. Quantum Inf. Process. 10, 189–202 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zawadzki, P.: Security of Ping-Pong protocol based on pairs of completely entangled qudits. Quantum Inf. Process. 11(6), 1419–1430 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jahanshahi, S., Bahrampour, A., Zandi, M.H.: Security enhanced direct quantum communication with higher bit-rate. Int. J. Quantum Inf. 11(2), 1350020 (2013)

    Article  MathSciNet  Google Scholar 

  17. Jahanshahi, S., Bahrampour, A., Zandi, M.H.: Three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inf. Process. 12(7), 2441–2451 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zawadzki, P.: Improving security of the Ping-Pong protocol. Quantum Inf. Process. 12(1), 149–155 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zawadzki, P.: The Ping-Pong protocol with a prior privacy amplification. Int. J. Quantum Inf. 10(3), 1250032 (2012)

    Article  Google Scholar 

  20. Ostermeyer, M., Walenta, N.: On the implementation of a deterministic secure coding protocol using polarization entangled photons. Opt. Commun. 281(17), 4540–4544 (2008)

    Article  Google Scholar 

  21. Wójcik, A.: Eavesdropping on the Ping-Pong quantum communication protocol. Phys. Rev. Lett. 90(15), 157901 (2003)

    Article  Google Scholar 

  22. Pavičić, M.: In quantum direct communication an undetectable eavesdropper can always tell ψ from φ Bell states in the message mode. Phys. Rev. A 87, 042326 (2013)

    Google Scholar 

  23. Coles, P.J.: Role of complementarity in superdense coding. Phys. Rev. A 88, 062317 (2013)

    Google Scholar 

  24. Zawadzki, P., Puchała, Z., Miszczak, J.: Increasing the security of the Ping-Pong protocol by using many mutually unbiased bases. Quantum Inf. Process. 12(1), 569–575 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zawadzki, P. (2014). Ping-Pong Protocol Strengthening against Pavičić’s Attack. In: Kwiecień, A., Gaj, P., Stera, P. (eds) Computer Networks. CN 2014. Communications in Computer and Information Science, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-319-07941-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07941-7_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07940-0

  • Online ISBN: 978-3-319-07941-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics