Skip to main content

Constraints and Hazards

  • Chapter
  • First Online:
Book cover The Energy-Climate Continuum
  • 490 Accesses

Abstract

Even if this part is dedicated to solutions, it would be incomplete without a mention of some constraints or drawbacks related to our energy sources. Some of them have to do with the inherent difficulties associated with any large-scale implementation of our energetic solutions and others, sadly, with casualties generated by these energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 37.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With this definition in mind, it takes \(1/e\) J to get 1 J of a given source of EROI \(e\). Therefore, any Joule recovered only counts for \((1-1/e)\) J. Mitigation of the numbers in Table 6.3 eventually amounts to multiply them by a factor \((1-1/e)\).

  2. 2.

    According to Tainter and Patzek [4, p. 208], this has definitely something to do with the accidents related to the upper mentioned platforms.

  3. 3.

    Warning: the world of non-conventional oil is a jungle. Besides shale oil/tight oil, you have tar sands, extra heavy oil or even biofuels that some count in the category. Though not obvious for the newcomer, Shale oil and oil shale are two completely different things. And so on. The Wikipedia page on “Unconventional oil” is a good start to sort things out.

  4. 4.

    See https://demanda.ree.es/demanda.html.

  5. 5.

    See https://demanda.ree.es/generacion_acumulada.html.

  6. 6.

    It can be done by simply rescaling the production and the consumption.

  7. 7.

    The Airbus A380 can take up to 853 passengers. See www.airbus.com.

  8. 8.

    World Health Organization, www.who.int.

  9. 9.

    Regarding the so-called “Petro-states,” see The Paradox of Plenty: Oil Booms and Petro-states by Terry Lynn Karl [18].

  10. 10.

    Sources for coal: US & Australia New South Wales Government—International Mining Fatality Review Database (IMFRD)—US Department of Labor China IMFRD, China Energy Statistical Yearbook, China Energy Research Society, China Coal Industry Yearbook, cited in [19], India IMFRD and Government of India Ministry of Coal, www.coal.nic.in/point18.html . Sources for US Oil & Gas US Department of Labor, Bureau of Labor Statistics.

  11. 11.

    Considering 1 ton \(=\) 7.33 barrels.

  12. 12.

    Code of Federal Regulations, Title 40, Part 355, Appendix A. See www.ecfr.gov.

  13. 13.

    US Energy Information Administration. See www.eia.gov.

  14. 14.

    International Energy Agency. See www.iea.gov.

  15. 15.

    International Commission on Large Dams, www.icold-cigb.org/GB/World_register/general_synthesis.asp.

  16. 16.

    The Three Gorges Dam can deliver 22 GW.

  17. 17.

    Medicine exploits this very process to cure hyperthyroidism. Also, Fukushima residents were given iodide pills to saturate their thyroid with healthy iodine before the coming of the radioactive one.

  18. 18.

    See Wikipedia article on Sievert for a starter on this and the other units related to radioactivity.

  19. 19.

    About 5,000 Bq from potassium-40 [39, p. 39].

  20. 20.

    There were more than 1 reactor in trouble in Fukushima.

  21. 21.

    Quite small indeed, around 5 %. The rest can be recycled [53].

  22. 22.

    The kind of pool already mentioned in relation with the Fukushima accident.

  23. 23.

    See www.aria.developpement-durable.gouv.fr.

  24. 24.

    See the “Desertec” project for example, www.desertec.org.

  25. 25.

    There are neutronless and tritiumless fusion reactions, like \(\mathrm{D}+\mathrm{He3} \rightarrow \mathrm{He4}+\mathrm{p}\). But they require even more energy than \(\mathrm{D} + \mathrm{T}\).

  26. 26.

    Just solve \(1.2\times 10^{17}(1.3)^n=5.3\times 10^{21}/2\), where is \(n\) the number of years.

References

  1. V. Smil. Energy in Nature and Society: General Energetics of Complex Systems. MIT Press, 2008

    Google Scholar 

  2. Charles A. S. Hall, Stephen Balogh, and David J.R. Murphy. What is the minimum EROI that a sustainable society must have? Energies, 2(1):25–47, 2009.

    Google Scholar 

  3. D.J. Murphy, C.A.S. Hall. Year in review—EROI or energy return on (energy) invested. Ann. N. Y. Acad. Sci. 1185(1), 102–118 (2010)

    Google Scholar 

  4. J.A. Tainter, T.W. Patzek, Drilling Down: The Gulf Oil Debacle and Our Energy Dilemma (Bücher. Springer New York, SpringerLink, 2012)

    Google Scholar 

  5. M. Levi, The Power Surge: Energy, Opportunity, and the Battle for America’s Future (Oxford University Press, USA, 2013)

    Google Scholar 

  6. K. Aleklett, O. Qvennerstedt, M. Lardelli, Peeking at Peak Oil (Bücher. Springer New York, SpringerLink, 2012)

    Google Scholar 

  7. C.E. McGlade, A review of the uncertainties in estimates of global oil resources. Energy 47(1), 262–270 (2012)

    Article  Google Scholar 

  8. Richard A. Kerr, Technology is turning U.S. oil around but not the World’s. Science 335(6068), 522–523 (2012)

    Google Scholar 

  9. Tommy Dalgaard, Uffe Jørgensen, Jørgen E. Olesen, Erik Steen Jensen, and Erik Steen Kristensen. Looking at biofuels and bioenergy. Science 312(5781), 1743–1744 (2006)

    Article  Google Scholar 

  10. Red Eléctrica de España, The spanish electricity system preliminary report 2013 (S.A.U, Technical report, Red Eléctrica de España , December 2013)

    Google Scholar 

  11. J.E. Martin. Mid-Latitude Atmospheric Dynamics: A First Course. Wiley, 2006.

    Google Scholar 

  12. Cory Budischak, DeAnna Sewell, Heather Thomson, Leon Mach, Dana E. Veron, Willett Kempton, Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. Journal of Power Sources 225, 60–74 (2013)

    Article  Google Scholar 

  13. H. Arendt. The Origins of Totalitarianism. (Houghton Mifflin Harcourt, India, 1973)

    Google Scholar 

  14. P. Virilio. The Original Accident. (Wiley, New York, 2007)

    Google Scholar 

  15. C. Hohenemser, R.W. Kates, P. Slovic, The nature of technological hazard. Science 220, 378–384 (1983)

    Article  Google Scholar 

  16. G.L. Wells. Hazard Identification & Risk Assessment. (Inst of Chemical Engineers, Mumbai, 1996)

    Google Scholar 

  17. D. Yergin. The prize: the epic quest for oil, money, and power. Simon & Schuster, 1991.

    Google Scholar 

  18. T.L. Karl, The Paradox of Plenty: Oil Booms and Petro-states, Studies in international political economy (University of California Press, California, 1997)

    Google Scholar 

  19. D. Fridley, Ed. China Energy Databook-User Guide and Documentation, Version 7.0. (Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory, 2008)

    Google Scholar 

  20. US Environmental Protection Agency and Office of Air Quality Planning and Standards. AP42 Compilation of Air Pollutant Emission Factors. Number chapter 5 in Compilation of Air Pollutant Emission Factors. U.S. Environmental Protection Agency, Office of Air and Radiation, (Office of Air Quality Planning and Standards, 1985)

    Google Scholar 

  21. D. Qing, J.G. Thibodeau, P.B. Williams, Probe International, and International Rivers Network. The River Dragon Has Come!: The Three Gorges Dam and the Fate of China’s Yangtze River. (East Gate Bks. Sharpe, 1998)

    Google Scholar 

  22. D. Proske, Catalogue of Risks: Natural, Technical Social and Health Risks (Springer London Limited, London, 2008)

    Google Scholar 

  23. U. Sandesara, T. Wooten. No One Had a Tongue to Speak: The Untold Story of One of History’s Deadliest Floods. (Prometheus Books, New York, 2011)

    Google Scholar 

  24. C. Zaetta, P. Santonastaso, A. Favaro. Long-term physical and psychological effects of the vajont disaster. Eur J Psychotraumatology, 2, 2011.

    Google Scholar 

  25. L. Berga. Dam Safety: Proceedings of the International Symposium on New Trends Adn Guidelines on Dam Safety, Barcelona, Spain, 17–19 June 1998

    Google Scholar 

  26. R. Blank, J. Echternkamp, K. Fings, J. Förster, W. Heinemann, T. Jersak, A. Nolzen, Germany and the Second World War:Volume IX/I: German Wartime Society 1939–1945: Politicization, Disintegration, and the Struggle for Survival (Clarendon Press Germany and the Second World War, Germany, 2008)

    Google Scholar 

  27. V.P. Jauhari. Sustaining River Linking. (Mittal Publications, New Delhi, 2005)

    Google Scholar 

  28. S.S.K. Jain, P.K. Agarwal, V.V.P. Singh, Hydrology and Water Resources of India Water science and technology library (Springer London Limited, London, 2007)

    Google Scholar 

  29. V.P. Singh, Dam Breach Modeling Technology (Springer Water Science and Technology Library, London, 1996)

    Google Scholar 

  30. US Departement of Homeland Security, Estimating loss of life for dam failure scenarios (Technical report, US Departement of Homeland Security, 2011)

    Google Scholar 

  31. C. Jaeger. Rock Mechanics and Engineering. Cambridge University Press, 1979.

    Google Scholar 

  32. Marco Pilotti, Andrea Maranzoni, Massimo Tomirotti, and Giulia Valerio. 1923 Gleno Dam Break: Case Study and Numerical Modeling. J. Hydraul Eng. 137(4), 480–492 (2011)

    Google Scholar 

  33. José Lera. 40 años de la tragedia de Ribadelago, en la que murieron 144 personas. El País, 10 Jan 1999.

    Google Scholar 

  34. International Rivers Network, Human rights dammed off at Three Gorges (Technical report, International Rivers Network, 2003)

    Google Scholar 

  35. Y. Tan. Resettlement in the Three Gorges Project in China. (Hong Kong University Press, 2008)

    Google Scholar 

  36. J.R. McNeill, Something New Under the Sun: An Environmental History of the Twentieth-Century World (Norton, The Global Century Series. W. W, 2001)

    Google Scholar 

  37. World Commission on Dams. Dams and Development: A New Framework for Decision-making: the Report of the World Commission on Dams, Nov 2000. Earthscan, 2000.

    Google Scholar 

  38. A.L. Nichols, D.L. Aldama, M. Verpelli, Handbook of nuclear data for safeguards: Database extensions, august, Report INDC(NDS)-0534 (International Atomic Energy Agency, Vienna, Austria, August, 2008)

    Google Scholar 

  39. A. Ansari. Radiation Threats and Your Safety: A Guide to Preparation and Response for Professionals and Community. (Taylor & Francis, UK, 2009)

    Google Scholar 

  40. M.T. Derin, P. Vijayagopal, B. Venkatraman, R.C. Chaubey, A. Gopinathan. Radionuclides and radiation indices of high background radiation area in Chavara-Neendakara placer deposits (Kerala, India). PLoS ONE, 7(11), e50468, (2012)

    Google Scholar 

  41. K.R.R. Nair, B. Rajan, S. Akiba, P. Jayalekshmi, M.K. Nair, P. Gangadharan, T. Koga, H. Morishima, S. Nakamura, T. Sugahara. Background radiation and cancer incidence in Kerala, india-karunagappally cohort study. Health Phys, 96, 55–66 (2009)

    Google Scholar 

  42. P.K.M. Koya, M.P. Chougaonkar, P. Predeep, P.J. Jojo, V.D. Cheriyan, Y.S. Mayya, M. Seshadri, Effect of low and chronic radiation exposure: a case-control study of mental retardation and cleft lip/palate in the monazite-bearing coastal areas of southern Kerala. Radiation Res. 177(1), 16–109 (2012)

    Google Scholar 

  43. Susan Cutter, Kent Barnes, Evacuation behavior and three mile island. Disasters 6(2), 116–124 (1982)

    Article  Google Scholar 

  44. I. Gusev, A. Guskova, and F.A. Mettler. Medical Management of Radiation Accidents, Second Edition. (Taylor & Francis, UK, 2010)

    Google Scholar 

  45. United Nations. Sources and Effects of Ionizing Radiation: Unscear 2008 Report: Effects: Scientific Annexes C, D and E. Sources and Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation : UNSCEAR 2008 Report to the General Assembly, with Scientific Annexes. Bernan Assoc, 2011

    Google Scholar 

  46. Robert J. Baker, Ronald K. Chesser, The Chornobyl nuclear disaster and subsequent creation of a wildlife preserve. Environ. Toxicol. Chem. 19(5), 1231–1232 (2000)

    Google Scholar 

  47. Sacha Vignieri, Wildlife, wildlands, water, and more. Science 336(6080), 414–417 (2012)

    Article  Google Scholar 

  48. H. Ellegren, G. Lindgren, C.R. Primmer, A.P. Moller, Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389(6651), 593–596 (1997)

    Article  Google Scholar 

  49. M. Danchenko, L. Skultety, N.M. Rashydov, V.V. Berezhna, L Mátel, T Salaj, Anna Pret’ová, and Martin Hajduch. Proteomic analysis of mature soybean seeds from the chernobyl area suggests plant adaptation to the contaminated environment. J. Proteome Res. 8(6), 2915–2922 (2009)

    Google Scholar 

  50. A.Timothy, Mousseau, M. Shane. Welch, Igor Chizhevsky, Oleg Bondarenko, Gennadi Milinevsky, David J. Tedeschi, Andrea Bonisoli-Alquati, and Anders Pape Møller. Tree rings reveal extent of exposure to ionizing radiation in scots pine pinus sylvestris. Trees, 27, 1443–1453 (2013)

    Google Scholar 

  51. World Health Organization. Global report on fukushima nuclear accident details health risks. Public Health & Environment e-News, 52, Feb 2013.

    Google Scholar 

  52. Nat. News Fukushima (2013). Fallout of fear. 493(7432), 290

    Google Scholar 

  53. AREVA. Rapport dinformation sur la sûreté nucléaire et la radioprotection du site AREVA la hague. Technical report, AREVA, 2011.

    Google Scholar 

  54. International Atomic Energy Agency, Classification of Radioactive Waste: General Safety Guide (IAEA safety standards series, International Atomic Energy Agency, 2009)

    Google Scholar 

  55. Declan Butler, France digs deep for nuclear waste. Nat. News 466(7308), 804–805 (2010)

    Article  Google Scholar 

  56. International Energy Agency. Key world energy statistics. International Energy Agency, 2012.

    Google Scholar 

  57. ANDRA. Inventaire national des matières et déchets radioactifs édition, Les essentiels (Technical report, Agence nationale pour la gestion des déchets radioactifs, January, 2012)

    Google Scholar 

  58. Bureau for analysis of industrial risks and pollution, Accidentology involving hydrogen (Technical report, Bureau for analysis of industrial risks and pollution, 2007)

    Google Scholar 

  59. Martin G. Schultz, Thomas Diehl, Guy P. Brasseur, Werner Zittel, Air pollution and climate-forcing impacts of a global hydrogen economy. Science 302(5645), 624–627 (2003)

    Article  Google Scholar 

  60. K. Tracey, Tromp, Run-Lie Shia, Mark Allen, John M. Eiler, and Y. L. Yung. Potential environmental impact of a hydrogen economy on the stratosphere. Science 300(5626), 1740–1742 (2003)

    Article  Google Scholar 

  61. M. Kikuchi, K. Lackner, M.Q. Tran. Fusion Physics. (International Atomic Energy Agency, Vienna, 2012)

    Google Scholar 

  62. D. Maisonnier, J. Hayward. Technological and engineering challenges of fusion. Proceedings of the 2nd IAEA Technical Meeting on First Generation of Fusion Power Plants: Design & Technology, 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Bret .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bret, A. (2014). Constraints and Hazards. In: The Energy-Climate Continuum. Springer, Cham. https://doi.org/10.1007/978-3-319-07920-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07920-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07919-6

  • Online ISBN: 978-3-319-07920-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics