Advertisement

Non-fossil Energy Sources

  • Antoine Bret
Chapter

Abstract

Non-fossil energy sources will have to be found among the energy reservoirs described in Sect.  2.5. This is exactly where fossil fuels can be found. Unlike with storage options, these reservoirs must be found already filled, if they are to earn the “source” label. This is why there will be no mention of electricity or hydrogen here. We will now go through the most probable candidates to the succession of the oil-coal-gas Triumvirate.

Keywords

Wind Turbine Wind Farm Geothermal Energy International Thermonuclear Experimental Reactor Gravitational Potential Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    International Energy Agency, Key world energy statistics (International Energy Agency, Paris, 2012)Google Scholar
  2. 2.
    D. DeHarpporte, South and Southeast Wind Atlas (Van Nostrand Reinhold, New York, 1984)Google Scholar
  3. 3.
    M.R. Patel, Wind and Solar Power Systems: Design, Analysis, and Operation, Mechanical Engineering (Taylor & Francis, London, 2006)Google Scholar
  4. 4.
    R.C. Bansal, A.F. Zobaa, Handbook of Renewable Energy Technology (World Scientific, Singapore, 2011)Google Scholar
  5. 5.
    H. Kuerten, Direct and Large-Eddy Simulation VIII, ERCOFTAC Series (Springer, Netherlands, 2011)Google Scholar
  6. 6.
    G. Burton, Chemical Storylines, Salter’s Advanced Chemistry Series (Butterworth Heinemann, Oxford, 2000)Google Scholar
  7. 7.
    IPCC, Climate Change 2013–The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2014)Google Scholar
  8. 8.
    D.J.C. McKay, Sustainable Energy, Without the Hot Air (UIT Cambridge Limited, Cambridge, 2009)Google Scholar
  9. 9.
    F.A. Armstrong, K.M. Blundell, Energy... Beyond Oil (Oxford University Press, Oxford, 2007)Google Scholar
  10. 10.
    D. Biello, Novel Solar Photovoltaic Cells Achieve Record Efficiency Using Nanoscale Structures (Nature News, London, 2013)Google Scholar
  11. 11.
    R.E. Blankenship, D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M.R. Gunner, W. Junge, D.M. Kramer, A. Melis, T.A. Moore, C.C. Moser, D.G. Nocera, A.J. Nozik, D.R. Ort, W.W. Parson, R.C. Prince, R.T. Sayre, Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031), 805–809 (2011)CrossRefGoogle Scholar
  12. 12.
    L.R. Brown, Plan B 2.0: Rescuing a Planet Under Stress And a Civilization in Trouble (W. W. Norton & Company, New York, 2006)Google Scholar
  13. 13.
    M. Johnston, J.A. Foley, T. Holloway, C. Kucharik, C. Monfreda, Resetting global expectations from agricultural biofuels. Environ. Res. Lett. 4(1), 014004 (2009)CrossRefGoogle Scholar
  14. 14.
    Food and Agriculture Organization of the United Nations and Organization, Fao Statistical Yearbook 2010, Fao Statistical Yearbook (Stylus Publishing LLC, USA, 2012)Google Scholar
  15. 15.
    R.F. Service, Battle for the barrel. Science 339(6126), 1374–1379 (2013)CrossRefGoogle Scholar
  16. 16.
    D.O. Hall, K.K. Rao, Photosynthesis, Studies in Biology (Cambridge University Press, Cambridge, 1999)Google Scholar
  17. 17.
    D.L. Turcotte, G. Schubert, Geodynamics (Cambridge University Press, Cambridge, 2002)CrossRefGoogle Scholar
  18. 18.
    A. Witze, Detectors zero in on Earth’s heat. Nature 496, 17 (2013)Google Scholar
  19. 19.
    R.T. Pierrehumbert, Principles of Planetary Climate (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  20. 20.
    R. Bertani, What is geothermal potential? Newslett. Int. Geoth. Assoc. 53, 1 (2003)Google Scholar
  21. 21.
    D. Huddart, T. Stott, Earth Environments: Past, Present and Future (Wiley, Hoboken, 2010)Google Scholar
  22. 22.
    International Energy Agency, Renewable Energy Essentials: Geothermal (International Energy Agency, Paris, 2010)Google Scholar
  23. 23.
    S. Björnsson, Geothermal Development and Research in Iceland (Orkustofnun, Reykjavik, 2010)Google Scholar
  24. 24.
    M.Z. Jacobson, A path to sustainable energy by 2030. Sci. Am. 301(5), 58–65 (2009)CrossRefGoogle Scholar
  25. 25.
    B. Metz, IPCC Working Group III, Climate Change 2007–Mitigation of Climate Change: Working Group III Contribution to the Fourth Assessment Report of the IPCC, Climate Change 2007 (Cambridge University Press, Cambridge, 2007)Google Scholar
  26. 26.
    R.A. Kerr, The coming copper peak. Science 343, 722 (2014)CrossRefGoogle Scholar
  27. 27.
    Nuclear Energy Agency and International Atomic Energy Agency, Uranium 2011: Resources, Production and Demand, Nuclear Energy Agency (Renouf Publishing Company Limited, Gloucester, 2012)Google Scholar
  28. 28.
    R. Martin, SuperFuel: Thorium, the Green Energy Source for the Future, MacSci (Palgrave Macmillan, Basingstoke, 2012)Google Scholar
  29. 29.
    G. McCracken, P. Stott, Fusion: The Energy of the Universe, Complementary Science (Elsevier Science, Amsterdam, 2012)Google Scholar
  30. 30.
    B.T. Cleveland, T. Daily, R. Davis Jr, J.R. Distel, K. Lande, C.K. Lee, P.S. Wildenhain, J. Ullman, Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 496, 505 (1998)CrossRefGoogle Scholar
  31. 31.
    J.N. Bahcall, Neutrinos from the Sun. Sci. Am. 221, 28–37 (1969)Google Scholar
  32. 32.
    S.N.O. Collaboration, Measurement of the rate of \(\nu _e + d \rightarrow p+p+e^-\) interactions produced by \(^{8}B\) solar neutrinos at the sudbury neutrino observatory. Phys. Rev. Lett. 87, 071301 (2001)Google Scholar
  33. 33.
    C. Lécuyer, P. Gillet, F. Robert, The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol. 145(34), 249–261 (1998)CrossRefGoogle Scholar
  34. 34.
    E.E. Angino, G.K. Billings, Lithium content of sea water by atomic absorption spectrometry. Geochim. Cosmochim. Acta 30(2), 153–158 (1966)CrossRefGoogle Scholar
  35. 35.
    J.D. Lawson, Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc. B 70, 6–10 (1957)CrossRefGoogle Scholar
  36. 36.
    J.-M. Rax, Physique des Plasmas: Cours et Applications, Sciences Sup (Dunod, Paris, 2005)Google Scholar
  37. 37.
    P.-H. Rebut, The JET preliminary tritium experiment. Plasma Phys. Control. Fusion 34(13), 1749 (1992)Google Scholar
  38. 38.
    D. van Houtte, G. Martin, A. Bécoulet, J. Bucalossi, G. Giruzzi, G.T. Hoang, Th. Loarer, B. Saoutic, The Tore Supra Team, Recent fully non-inductive operation results in Tore Supra with 6 min, 1 GJ plasma discharges. Nucl. Fusion 44(5), L11 (2004)Google Scholar
  39. 39.
    International Atomic Energy Agency, Summary of the ITER Final Design Report, ITER EDA Documentation Series (International Atomic Energy Agency, Wien, 2001)Google Scholar
  40. 40.
    D. Maisonnier, J. Hayward, Technological and engineering challenges of fusion. in Proceedings of the 2nd IAEA Technical Meeting on First Generation of Fusion Power Plants: Design & Technology, 2007Google Scholar
  41. 41.
    B.Yu. Sharkov, FAIR: facility for antiproton and ion research in Europe new prospects for growth of nuclear science and high technologies in Russia. At. Energy 112, 75–79 (2012)Google Scholar
  42. 42.
    J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933–4024 (1995)CrossRefGoogle Scholar
  43. 43.
    E. Hand, National ignition facility fires record laser shot. Nature 20122013, 2012 (2012)Google Scholar
  44. 44.
    S.H. Glenzer, B.J. MacGowan, P. Michel, N.B. Meezan, L.J. Suter, S.N. Dixit, J.L. Kline, G.A. Kyrala, D.K. Bradley, D.A. Callahan, E.L. Dewald, L. Divol, E. Dzenitis, M.J. Edwards, A.V. Hamza, C.A. Haynam, D.E. Hinkel, D.H. Kalantar, J.D. Kilkenny, O.L. Landen, J.D. Lindl, S. LePape, J.D. Moody, A. Nikroo, T. Parham, M.B. Schneider, R.P.J. Town, P. Wegner, K. Widmann, P. Whitman, B.K.F. Young, B. Van Wonterghem, L.J. Atherton, E.I. Moses, Symmetric inertial confinement fusion implosions at ultra-high laser energies. Science 327(5970), 1228–1231 (2010)CrossRefGoogle Scholar
  45. 45.
    H.-S. Park, O.A. Hurricane, D.A. Callahan, D.T. Casey, E.L. Dewald, T.R. Dittrich, T. Döppner, D.E. Hinkel, L.F. Berzak Hopkins, S. Le Pape, T. Ma, P.K. Patel, B.A. Remington, H.F. Robey, J.D. Salmonson, and J.L. Kline, High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility. Phys. Rev. Lett. 112, 055001 (2014)Google Scholar
  46. 46.
    O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, E.L. Dewald, T.R. Dittrich, T. Döppner, D.E. Hinkel, L.F. Berzak Hopkins, J.L. Kline, S. Le Pape, T. Ma, A.G. MacPhee, J.L. Milovich, A. Pak, H.S. Park, P.K. Patel, B.A. Remington, J.D. Salmonson, P.T. Springer, R. Tommasini, Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343348 (2014)Google Scholar
  47. 47.
    R.K. Kirkwood, J.D. Moody, J. Kline, E. Dewald, S. Glenzer, L. Divol, P. Michel, D. Hinkel, R. Berger, E. Williams, J. Milovich, L. Yin, H. Rose, B. MacGowan, O. Landen, M. Rosen, J. Lindl, A review of laser-plasma interaction physics of indirect-drive fusion. Plasma Phys. Control. Fusion 55(10), 103001 (2013)CrossRefGoogle Scholar
  48. 48.
    M.G. Haines, A review of the dense Z-pinch. Plasma Phys. Control. Fusion 53(9), 093001 (2011)Google Scholar
  49. 49.
    R.F. Service, Sonofusion back on the firing line as misconduct probe reopens. Science 316(5827), 964 (2007)CrossRefGoogle Scholar
  50. 50.
    J. Hecht, Clear proof: the final demonstration of the failure of cold fusion. Nature 462(7269), 126–126 (2009)CrossRefGoogle Scholar
  51. 51.
    L.W. Alvarez, H. Bradner, F.S. Crawford, J.A. Crawford, P. Falk-Vairant, M.L. Good, J.D. Gow, A.H. Rosenfeld, F. Solmitz, M.L. Stevenson, H.K. Ticho, R.D. Tripp, Catalysis of nuclear reactions by \(\mu \) mesons. Phys. Rev. 105, 1127–1128 (1957)CrossRefGoogle Scholar
  52. 52.
    J.D. Jackson, Catalysis of nuclear reactions between hydrogen isotopes by \(\mu ^{-}\) mesons. Phys. Rev. 106, 330–339 (1957)CrossRefGoogle Scholar
  53. 53.
    J. Rafelski, S.E. Jones, Cold nuclear fusion. Sci. Am. 257, 84–89 (1987)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.ETSI IndustrialesUniversidad Castilla La ManchaCiudad RealSpain

Personalised recommendations