Skip to main content

Antibodies as Natural Adjuvants

  • Chapter
  • First Online:
Book cover Fc Receptors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 382))

Abstract

Antibodies in complex with specific antigen can dramatically change the antibody response to this antigen. Depending on antibody class and type of antigen, >99 % suppression or >100-fold enhancement of the response can take place. IgM and IgG3 are efficient enhancers and operate via the complement system. In contrast, IgG1, IgG2a, and IgG2b enhance antibody and CD4+ T cell responses to protein antigens via activating Fcγ-receptors. IgE also enhances antibody and CD4+ T cell responses to small proteins but uses the low-affinity receptor for IgE, CD23. Most likely, IgM and IgG3 work by increasing the effective concentration of antigen on follicular dendritic cells in splenic follicles. IgG1, IgG2a, IgG2b, and IgE probably enhance antibody responses by increasing antigen presentation by dendritic cells to T helper cells. IgG antibodies of all subclasses have a dual effect, and suppress antibody responses to particulate antigens such as erythrocytes. This capacity is used in the clinic to prevent immunization of Rhesus-negative women to Rhesus-positive fetal erythrocytes acquired via transplacental hemorrage. IgG-mediated suppression in mouse models can take place in the absence of Fcγ-receptors and complement and to date no knock-out mouse strain has been found where suppression is abrogated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexeyev OA, Ahlm C, Billheden J, Settergren B, Wadell G, Juto P (1994) Elevated levels of total and Puumala virus-specific immunoglobulin E in the Scandinavian type of hemorrhagic fever with renal syndrome. Clin Diagn Lab Immunol 1(3):269–272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Applequist SE, Dahlström J, Jiang N, Molina H, Heyman B (2000) Antibody production in mice deficient for complement receptors 1 and 2 can be induced by IgG/Ag and IgE/Ag, but not IgM/Ag complexes. J Immunol 165:2398–2403

    Article  PubMed  CAS  Google Scholar 

  • Arnon TI, Horton RM, Grigorova IL, Cyster JG (2013) Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493(7434):684–688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J (2000) B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192(2):271–280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bennich HH, Ishizaka K, Johansson SG, Rowe DS, Stanworth DR, Terry WD (1968) Immunoglobulin E: a new class of human immunoglobulin. Immunology 15(3):323–324

    Google Scholar 

  • Bettler B, Hofstetter H, Rao M, Yokoyama WM, Kilchherr F, Conrad DH (1989) Molecular structure and expression of the murine lympocyte low affinity receptor for IgE (FcεRII). Proc Natl Acad Sci USA 86:7566–7570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brinc D, Lazarus AH (2009) Mechanisms of anti-D action in the prevention of hemolytic disease of the fetus and newborn. Hematol Am Soc Hematol Educ Program 185–191

    Google Scholar 

  • Brinc D, Le-Tien H, Crow AR, Siragam V, Freedman J, Lazarus AH (2008) Transfusion of IgG-opsonized foreign red blood cells mediates reduction of antigen-specific B cell priming in a murine model. J Immunol 181(2):948–953

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann M, Rajewsky K (1982) Regulation of the antibody response against hapten-coupled erythrocytes by monoclonal anti-hapten antibodies of various isotypes. Cell Immunol 71:365–373

    Article  PubMed  Google Scholar 

  • Carlsson F, Hjelm F, Conrad DH, Heyman B (2007) IgE enhances specific antibody and T cell responses in mice overexpressing CD23. Scand J Immunol 66:261–270

    Article  PubMed  CAS  Google Scholar 

  • Carlsson F, Getahun A, Rutemark C, Heyman B (2009) Impaired antibody responses but normal proliferation of specific CD4+ T cells in mice lacking complement receptors 1 and 2. Scand J Immunol 70(2):77–84

    Article  PubMed  CAS  Google Scholar 

  • Cerottini JC, McConahey PJ, Dixon FJ (1969) The immunosuppressive effect of passively administered antibody IgG fragments. J Immunol 102:1008–1015

    PubMed  CAS  Google Scholar 

  • Chan PL, Sinclair NRSTC (1973) Regulation of the immune response. VI. Inability of F(ab′)2 antibody to terminate established immune responses and its ability to interfere with IgG antibody-mediated immunosuppression. Immunology 24:289–310

    Google Scholar 

  • Cinamon G, Zachariah MA, Lam OM, Foss FW Jr, Cyster JG (2008) Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9(1):54–62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clarke CA, Donohoe WTA, Woodrow JC, Finn R, Krevans JR, Kulke W et al (1963) Further experimental studies on the prevention of Rh haemolytic disease. Br Med J 1:979–984

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cooper LJ, Schimenti JC, Glass DD, Greenspan NS (1991) H chain C domains influence the strength of binding of IgG for streptococcal group A carbohydrate. J Immunol 146(8):2659–2663

    PubMed  CAS  Google Scholar 

  • Coulie P, Van Snick J (1985) Enhancement of IgG anti-carrier responses by IgG2-anti-hapten antibodies in mice. Eur J Immunol 15:793–798

    Article  PubMed  CAS  Google Scholar 

  • Daëron M, Lesourne R (2006) Negative signaling in Fc receptor complexes. Adv Immunol 89:39–86

    Article  PubMed  Google Scholar 

  • de Jong JM, Schuurhuis DH, Ioan-Facsinay A, Welling MM, Camps MG, van der Voort EI et al (2006) Dendritic cells, but not macrophages or B cells, activate major histocompatibility complex class II-restricted CD4 + T cells upon immune-complex uptake in vivo. Immunology 119(4):499–506

    Article  PubMed  PubMed Central  Google Scholar 

  • de Ståhl Diaz (2001) T, Heyman B. IgG2a-mediated enhancement of antibody responses is dependent on FcRgamma + bone marrow-derived cells. Scand J Immunol 54(5):495–500

    Article  Google Scholar 

  • Dennert G (1971) The mechanism of antibody-induced stimulation and inhibition of the immune response. J Immunol 106:951–955

    PubMed  CAS  Google Scholar 

  • Diaz de Ståhl T, Dahlström J, Carroll MC, Heyman B (2003) A role for complement in feedback-enhancement of antibody responses by IgG3. J Exp Med 197:1183–1190

    Article  PubMed  Google Scholar 

  • Ding Z, Bergman A, Rutemark C, Ouchida R, Ohno H, Wang JY et al (2013) Complement-activating IgM enhances the humoral but not the T cell immune response in mice. PLoS ONE 8(11):e81299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Donius LR, Handy JM, Weis JJ, Weis JH (2013) Optimal germinal center B cell activation and T-dependent antibody responses require expression of the mouse complement receptor Cr1. J Immunol 191(1):434–447

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ehrenstein MR, O’Keefe TL, Davies SL, Neuberger MS (1998) Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc Natl Acad Sci USA 95(17):10089–10093

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Enriquez-Rincon F, Klaus GGB (1984) Differing effects of monoclonal anti-hapten antibodies on humoral responses to soluble or particulate antigens. Immunology 52:129–136

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ferguson AR, Youd ME, Corley RB (2004) Marginal zone B cells transport and deposit IgM-containing immune complexes onto follicular dendritic cells. Int Immunol 16(10):1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara H, Kikutani H, Suematsu S, Naka T, Yoshida K, Yoshida K et al (1994) The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Proc Natl Acad Sci USA 91:6835–6839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gavin AL, Barnes N, Dijstelbloem HM, Hogarth PM (1998) Identification of the mouse IgG3 receptor: Implications for antibody effector function at the interface between innate and adaptive immunity. J Immunol 160:20–23

    PubMed  CAS  Google Scholar 

  • Getahun A, Heyman B (2009) Studies on the mechanism by which antigen-specific IgG suppresses primary antibody responses: evidence for epitope masking and decreased localization of antigen in the spleen. Scand J Immunol 70(3):277–287

    Article  PubMed  CAS  Google Scholar 

  • Getahun A, Dahlström J, Wernersson S, Heyman B (2004) IgG2a-mediated enhancement of Ab- and T-cell responses and its relation to inhibitory and activating FcγRs. J Immunol 172:5269–5276

    Article  PubMed  CAS  Google Scholar 

  • Getahun A, Hjelm F, Heyman B (2005) IgE enhances antibody and T cell responses in vivo via CD23+ B Cells. J Immunol 175(3):1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Greenspan NS, Cooper LJN (1992) Intermolecular cooperativity: a clue to why mice have IgG3? Immunol Today 13:164–168

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson S, Hjulström S, Liu T, Heyman B (1994) CD23/IgE-mediated regulation of the specific antibody response in vivo. J Immunol 152:4793–4800

    PubMed  CAS  Google Scholar 

  • Gustavsson S, Hjulström-Chomez S, Lidström B-M, Ahlborg N, Andersson R, Heyman B (1998) Impaired antibody responses in H-2Ab mice. J Immunol 161:1765–1771

    PubMed  CAS  Google Scholar 

  • Gustavsson S, Wernersson S, Heyman B (2000) Restoration of the antibody response to IgE/antigen complexes in CD23-deficient mice by CD23+ spleen or bone marrow cells. J Immunol 164:3990–3995

    Article  PubMed  CAS  Google Scholar 

  • Hamano Y, Arase H, Saisho H, Saito T (2000) Immune complex and Fc receptor-mediated augmentation of antigen presentation for in vivo Th cell responses. J Immunol 164(12):6113–6119

    Article  PubMed  CAS  Google Scholar 

  • Harte PG, Cooke A, Playfair JHL (1983) Specific monoclonal IgM is a potent adjuvant in murine malaria vaccination. Nature 302:256–258

    Article  PubMed  CAS  Google Scholar 

  • Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP, Kirchhausen T, et al (2013) Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38:1164–1175

    Google Scholar 

  • Henningsson F, Ding Z, Dahlin JS, Linkevicius M, Carlsson F, Grönvik KO et al (2011) IgE-mediated enhancement of CD4+ T cell responses in mice requires antigen presentation by CD11c+ cells and not by B cells. PLoS ONE 6(7):e21760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Henry C, Jerne N (1968) Competition of 19S and 7S antigen receptors in the regulation of the primary immune response. J Exp Med 128:133–152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heyman B (2000) Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu Rev Immunol 18:709–737

    Article  PubMed  CAS  Google Scholar 

  • Heyman B (2003) Feedback regulation by IgG antibodies. Immunol Lett 88:157–161

    Article  PubMed  CAS  Google Scholar 

  • Heyman B (2013) Antibody mediated regulation of humoral immunity. In: Nimmerjahn F (ed) Molecular and cellular mechanisms of antibody activity. Springer, New York, pp 221–249

    Chapter  Google Scholar 

  • Heyman B, Wigzell H (1984) Immunoregulation by monoclonal sheep erythrocyte specific IgG antibodies. Suppression is correlated to level of antigen binding and not to isotype. J Immunol 132:1136–1143

    PubMed  CAS  Google Scholar 

  • Heyman B, Wigzell H (1985) IgM enhances and IgG suppresses immunological memory in mice. Scand J Immunol 21:255–266

    Article  PubMed  CAS  Google Scholar 

  • Heyman B, Andrighetto S, Wigzell H (1982) Antigen dependent IgM-mediated enhancement of the sheep erythrocyte response in mice. Evidence for induction of B cells with specificities other than that of the injected antibodies. J Exp Med 155:994–1009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heyman B, Pilström L, Shulman MJ (1988a) Complement activation is required for IgM-mediated enhancement of the antibody response. J Exp Med 167:1999–2004

    Article  PubMed  CAS  Google Scholar 

  • Heyman B, Wiersma E, Nose M (1988b) Complement activation is not required for IgG-mediated suppression of the antibody response. Eur J Immunol 18:1739–1743

    Article  PubMed  CAS  Google Scholar 

  • Heyman B, Liu T, Gustavsson S (1993) In vivo enhancement of the specific antibody response via the low affinity receptor for IgE. Eur J Immunol 23:1739–1742

    Article  PubMed  CAS  Google Scholar 

  • Hjelm F, Carlsson F, Verbeek S, Heyman B (2005) IgG3-mediated enhancement of the antibody response is normal in Fc gammaRI-deficient mice. Scand J Immunol 62(5):453–461

    Article  PubMed  CAS  Google Scholar 

  • Hjelm F, Carlsson F, Getahun A, Heyman B (2006) Antibody-mediated regulation of the immune response. Scand J Immunol 64(3):177–184

    Article  PubMed  CAS  Google Scholar 

  • Hjelm F, Karlsson MCI, Heyman B (2008) A novel B-cell mediated transport of IgE-immune complexes to the follicle of the spleen. J Immunol 180:6604–6610

    Article  PubMed  CAS  Google Scholar 

  • Hjulström S, Landin A, Jansson L, Holmdahl R, Heyman B (1995) No role of interleukin-4 in CD23/IgE-mediated enhancement of the murine antibody response in vivo. Eur J Immunol 25:1469–1472

    Article  PubMed  Google Scholar 

  • Honjo K, Kubagawa Y, Jones DM, Dizon B, Zhu Z, Ohno H et al (2012) Altered Ig levels and antibody responses in mice deficient for the Fc receptor for IgM (FcmuR). Proc Natl Acad Sci USA 109(39):15882–15887

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ishizaka K, Ishizaka T, Hornbrook MM (1966a) Physicochemical properties of reaginic antibody. V. Correlation of reaginic activity with gamma-E-globulin antibody. J Immunol 97(6):840–853

    PubMed  CAS  Google Scholar 

  • Ishizaka K, Ishizaka T, Hornbrook MM (1966b) Physico-chemical properties of human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of reaginic activity. J Immunol 97(1):75–85

    PubMed  CAS  Google Scholar 

  • Johansson SG, Bennich H (1967) Immunological studies of an atypical (myeloma) immunoglobulin. Immunology 13(4):381–394

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karlsson MCI, Wernersson S, Diaz de Ståhl T, Gustavsson S, Heyman B (1999) Efficient IgG-mediated suppression of primary antibody responses in Fc-gamma receptor-deficient mice. Proc Natl Acad Sci USA 96:2244–2249

    Google Scholar 

  • Karlsson MCI, Getahun A, Heyman B (2001) FcγRIIB in IgG-mediated suppression of antibody responses: different impact in vivo and in vitro. J Immunol 167:5558–5564

    Article  PubMed  CAS  Google Scholar 

  • Kehry MR, Yamashita LC (1989) Low-affinity IgE receptor (CD23) function on mouse B cells: role in IgE-dependent antigen focusing. Proc Natl Acad Sci USA 86:7556–7560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Klaus GGB (1979) Generation of memory cells. III. Antibody class requirements for the generation of B-memory cells by antigen-antibody complexes. Immunology 37:345–351

    Google Scholar 

  • Kondo H, Ichikawa Y, Nakamura K, Tsuchiya S (1994) Cloning of cDNAs for new subtypes of murine low-affinity Fc receptor for IgE (FcεRII/CD23). Int Arch Allergy Immunol 105:38–48

    Article  PubMed  CAS  Google Scholar 

  • Kubagawa H, Oka S, Kubagawa Y, Torii I, Takayama E, Kang DW et al (2009) Identity of the elusive IgM Fc receptor (FcmuR) in humans. J Exp Med 206(12):2779–2793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lawrence DA, Weigle WO, Spiegelberg HL (1975) Immunoglobulins cytophilic for human lymphocytes, monocytes, and neutrophils. J Clin Invest 55:268–275

    Article  Google Scholar 

  • Link A, Zabel F, Schnetzler Y, Titz A, Brombacher F, Bachmann MF (2012) Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunol 188(8):3724–3733

    Article  PubMed  CAS  Google Scholar 

  • Maeda K, Burton GF, Padgett DA, Conrad DH, Huff TF, Masuda A et al (1992) Murine follicular dendritic cells and low affinity Fc receptors for IgE (FcεRII). J Immunol 148:2340–2347

    PubMed  CAS  Google Scholar 

  • Mancardi DA, Iannascoli B, Hoos S, England P, Daeron M, Bruhns P (2008) FcgammaRIV is a mouse IgE receptor that resembles macrophage FcepsilonRI in humans and promotes IgE-induced lung inflammation. J Clin Invest 118(11):3738–3750

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marichal T, Starkl P, Reber LL, Kalesnikoff J, Oettgen HC, Tsai M et al (2013) A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity 39:963–975

    Google Scholar 

  • McGreal EP, Miller JL, Gordon S (2005) Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol 17:18–24

    Article  PubMed  CAS  Google Scholar 

  • Metzger H (1991) The high affinity receptor for IgE on mast cells. Clin Exp Allergy 21:269–279

    Article  PubMed  CAS  Google Scholar 

  • Na D, Kim D, Lee D (2006) Mathematical modeling of humoral immune response suppression by passively administered antibodies in mice. J Theor Biol 241(4):830–851

    Article  PubMed  CAS  Google Scholar 

  • Nie X, Basu S, Cerny J (1997) Immunization with immune complex alters the repertoire of antigen-reactive B cells in the germinal centers. Eur J Immunol 27(12):3517–3525

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512

    Article  PubMed  CAS  Google Scholar 

  • Ouchida R, Mori H, Hase K, Takatsu H, Kurosaki T, Tokuhisa T et al (2012) Critical role of the IgM Fc receptor in IgM homeostasis, B-cell survival, and humoral immune responses. Proc Natl Acad Sci USA 109(40):E2699–E2706

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palm NW, Rosenstein RK, Yu S, Schenten DD, Florsheim E, Medzhitov R (2013) Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity 39:976–985

    Google Scholar 

  • Perlmutter RM, Hansburg D, Briles DE, Nicolotti RA, Davie JM (1978) Subclass restriction of murine anti-carbohydrate antibodies. J Immunol 121:566–572

    PubMed  CAS  Google Scholar 

  • Pirron U, Schlunck T, Prinz JC, Rieber EP (1990) IgE-dependent antigen focusing by human B lymphocytes is mediated by low-affinity receptor for IgE. Eur J Immunol 20:1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Qin D, Wu J, Vora KA, Ravetch JV, Szakal AK, Manser T et al (2000) Fc gamma receptor IIB on follicular dendritic cells regulates the B cell recall response. J Immunol 164(12):6268–6275

    Article  PubMed  CAS  Google Scholar 

  • Rao M, Lee WT, Conrad DH (1987) Characterization of a monoclonal antibody directed against the murine B lymphocyte receptor for IgE. J Immunol 138:1845–1851

    PubMed  CAS  Google Scholar 

  • Rubinstein LJ, Stein KE (1988) Murine immune response to the N. meningitidis group C capsular polysaccharide: ontogeny. J Immunol 141:4352–4356

    PubMed  CAS  Google Scholar 

  • Rutemark C, Alicot E, Bergman A, Ma M, Getahun A, Ellmerich S et al (2011) Requirement for complement in antibody responses is not explained by the classic pathway activator IgM. Proc Natl Acad Sci USA 108(43):E934–E942

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rutemark C, Bergman A, Getahun A, Hallgren J, Henningsson F, Heyman B (2012) Complement receptors 1 and 2 in murine antibody responses to IgM-complexed and uncomplexed sheep erythrocytes. PLoS ONE 7(7):e41968

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shima H, Takatsu H, Fukuda S, Ohmae M, Hase K, Kubagawa H et al (2010) Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int Immunol 22(3):149–156

    Article  PubMed  CAS  Google Scholar 

  • Sinclair NRSC (1969) Regulation of the immune response. I. Reduction in ability of specific antibody to inhibit longlasting IgG immunological priming after removal of the Fc fragment. J Exp Med 129:1183–1201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takizawa F, Adamczewski M, Kinet J-P (1992) Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as FcγRII and FcγRIII. J Exp Med 176:469–476

    Article  PubMed  CAS  Google Scholar 

  • Tao TW, Uhr JW (1966) Capacity of pepsin-digested antibody to inhibit antibody formation. Nature 212:208–209

    Article  PubMed  CAS  Google Scholar 

  • Terres G, Habicht GS, Stoner RD (1974) Carrier-specific enhancement of the immune response using antigen-antibody complexes. J Immunol 112:804–811

    PubMed  CAS  Google Scholar 

  • Uhr JW, Möller G (1968) Regulatory effect of antibody on the immune response. Adv Immunol 8:81–127

    Article  PubMed  CAS  Google Scholar 

  • Urbaniak SJ, Greiss MA (2000) RhD haemolytic disease of the fetus and the newborn. Blood Rev 14(1):44–61

    Article  PubMed  CAS  Google Scholar 

  • von Behring E, Wernicke E (1892) Über Immunisierung und Heilung von Versuchstieren bei der Diphterie. Z Hyg Infektionskrankheit 12:10–44

    Google Scholar 

  • Welliver RC (2003) Respiratory syncytial virus and other respiratory viruses. Pediatr Infect Dis J 22(2 Suppl):S6–S10; discussion S-2

    Google Scholar 

  • Wernersson S, Karlsson M, Dahlström J, Mattsson R, Verbeek JS, Heyman B (1999) IgG-mediated enhancement of Ab responses is low in FcRγ chain deficient mice and increased in FcγRII deficient mice. J Immunol 163:618–622

    PubMed  CAS  Google Scholar 

  • Westman S, Gustavsson S, Heyman B (1997) Early expansion of secondary B cells after primary immunization with antigen complexed with IgE. Scand J Immunol 46:10–15

    Article  PubMed  CAS  Google Scholar 

  • Whited Collisson E, Andersson B, Lamon EW (1984) Avidities of hapten-specific antibodies when the responses are modulated by anti-carrier antibodies. Immunology 53:443–449

    Google Scholar 

  • Wiersma EJ, Coulie PG, Heyman B (1989) Dual immunoregulatory effects of monoclonal IgG-antibodies: suppression and enhancement of the antibody response. Scand J Immunol 29:439–448

    Article  PubMed  CAS  Google Scholar 

  • Wiersma EJ, Nose M, Heyman B (1990) Evidence of IgG-mediated enhancement of the antibody response in mice without classical pathway complement activation. Eur J Immunol 20:2585–2589

    Article  PubMed  CAS  Google Scholar 

  • Youd ME, Ferguson AR, Corley RB (2002) Synergistic roles of IgM and complement in antigen trapping and follicular localization. Eur J Immunol 32:2328–2337

    Article  PubMed  CAS  Google Scholar 

  • Yu LCH, Montagnac G, Yang P-C, Conrad DH, Benmerah A, Perdue MH (2003) Intestinal epithelial CD23 mediates enhanced antigen transport in allergy: evidence for a novel splice form. Am J Physiol Gastrointes Liver Physiol 285:G223–G234

    CAS  Google Scholar 

  • Zhang Y, Meyer-Hermann M, George LA, Figge MT, Khan M, Goodall M et al (2013) Germinal center B cells govern their own fate via antibody feedback. J Exp Med 210(3):457–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang L, Ding Z, Xu H, Heyman B Marginal zone B cells transport IgG3-immune complexes to splenic follicles. J Immunol (in press)

    Google Scholar 

Download references

Acknowledgements

I wish to thank all past and present members of my laboratory, who have shared my interest in revealing how antibodies feedback-regulate the production of themselves. The work has been supported by Uppsala University, the Swedish Research Council, Ellen, Walter and Lennart Hesselman’s Foundation, Hans von Kantzow’s Foundation, King Gustaf V:s 80 Years Foundation, Ollie and Elof Ericsson’s Foundation, and Agnes and Mac Rudberg’s Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitta Heyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heyman, B. (2014). Antibodies as Natural Adjuvants. In: Daeron, M., Nimmerjahn, F. (eds) Fc Receptors. Current Topics in Microbiology and Immunology, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-319-07911-0_9

Download citation

Publish with us

Policies and ethics