Skip to main content

Regulation of FcεRI Signaling by Lipid Phosphatases

  • Chapter
  • First Online:
Fc Receptors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 382))

Abstract

Mast cells (MCs) are tissue-resident sentinels of hematopoietic origin that play a prominent role in allergic diseases. They express the high-affinity receptor for IgE (FcεRI), which when cross-linked by multivalent antigens triggers the release of preformed mediators, generation of arachidonic acid metabolites, and the synthesis of cytokines and chemokines. Stimulation of the FcεRI with increasing antigen concentrations follows a characteristic bell-shaped dose-responses curve. At high antigen concentrations, the so-called supra-optimal conditions, repression of FcεRI-induced responses is facilitated by activation and incorporation of negative signaling regulators. In this context, the SH2-containing inositol-5′-phosphatase, SHIP1, has been demonstrated to be of particular importance. SHIP1 with its catalytic and multiple protein interaction sites provides several layers of control for FcεRI signaling. Regulation of SHIP1 function occurs on various levels, e.g., protein expression, receptor and membrane recruitment, competition for protein–protein interaction sites, and activating modifications enhancing the phosphatase function. Apart from FcεRI-mediated signaling, SHIP1 can be activated by diverse unrelated receptor systems indicating its involvement in the regulation of antigen-dependent cellular responses by autocrine feedback mechanisms or tissue-specific and/or (patho-) physiologically determined factors. Thus, pharmacologic engagement of SHIP1 may represent a beneficial strategy for patients suffering from acute or chronic inflammation or allergies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali K, Bilancio A, Thomas M, Pearce W, Gilfillan AM, Tkaczyk C et al (2004) Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 431(7011):1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Asai K, Kitaura J, Kawakami Y, Yamagata N, Tsai M, Carbone DP et al (2001) Regulation of mast cell survival by IgE. Immunity 14(6):791–800

    Article  PubMed  CAS  Google Scholar 

  • Baba Y, Nishida K, Fujii Y, Hirano T, Hikida M, Kurosaki T (2008) Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 9(1):81–88

    Article  PubMed  CAS  Google Scholar 

  • Bence K, Ma W, Kozasa T, Huang XY (1997) Direct stimulation of Bruton’s tyrosine kinase by G(q)-protein alpha-subunit. Nature 389(6648):296–299

    Article  PubMed  CAS  Google Scholar 

  • Blank U, Ra C, Miller L, White K, Metzger H, Kinet JP (1989) Complete structure and expression in transfected cells of high affinity IgE receptor. Nature 337(6203):187–189

    Article  PubMed  CAS  Google Scholar 

  • Bolland S, Pearse RN, Kurosaki T, Ravetch JV (1998) SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity 8(4):509–516

    Article  PubMed  CAS  Google Scholar 

  • Brauer H, Strauss J, Wegner W, Muller-Tidow C, Horstmann M, Jucker M (2012) Leukemia-associated mutations in SHIP1 inhibit its enzymatic activity, interaction with the GM-CSF receptor and Grb2, and its ability to inactivate PI3 K/AKT signaling. Cell Sig 24(11):2095–2101

    Article  CAS  Google Scholar 

  • Buchse T, Horras N, Lenfert E, Krystal G, Korbel S, Schumann M et al (2011) CIN85 interacting proteins in B cells-specific role for SHIP-1. Mol Cell Proteomics 10(10):M110 006239

    Google Scholar 

  • Costa JJ, Weller PF, Galli SJ (1997) The cells of the allergic response: mast cells, basophils, and eosinophils. JAMA 278(22):1815–1822

    Article  PubMed  CAS  Google Scholar 

  • Costello PS, Turner M, Walters AE, Cunningham CN, Bauer PH, Downward J et al (1996) Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene 13(12):2595–2605

    PubMed  CAS  Google Scholar 

  • Dombrowicz D, Lin S, Flamand V, Brini AT, Koller BH, Kinet JP (1998) Allergy-associated FcRbeta is a molecular amplifier of IgE- and IgG-mediated in vivo responses. Immunity 8(4):517–529

    Article  PubMed  CAS  Google Scholar 

  • Donnadieu E, Jouvin MH, Kinet JP (2000) A second amplifier function for the allergy-associated Fc(epsilon)RI-beta subunit. Immunity 12(5):515–523

    Article  PubMed  CAS  Google Scholar 

  • Draberova L, Lebduska P, Halova II, Tolar P, Stokrova J, Tolarova H et al (2004) Signaling assemblies formed in mast cells activated via Fcepsilon receptor I dimers. Eur J Immunol 34(8):2209–2219

    Article  PubMed  CAS  Google Scholar 

  • Echtenacher B, Mannel DN, Hultner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis [see comments]. Nature 381(6577):75–77

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach K, Lessmann E, Zorn CN, Kuhny M, Grochowy G, Krystal G et al (2009) Steel factor enhances supraoptimal antigen-induced IL-6 production from mast cells via activation of protein kinase C-beta. J Immunol 182(12):7897–7905

    Article  PubMed  CAS  Google Scholar 

  • Feng C, Beller EM, Bagga S, Boyce JA (2006) Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses. Blood 107(8):3243–3250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7(9):690–702

    Article  PubMed  CAS  Google Scholar 

  • Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M et al (2011) Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35(5):832–844

    Article  PubMed  CAS  Google Scholar 

  • Furumoto Y, Brooks S, Olivera A, Takagi Y, Miyagishi M, Taira K et al (2006) Cutting Edge: lentiviral short hairpin RNA silencing of PTEN in human mast cells reveals constitutive signals that promote cytokine secretion and cell survival. J Immunol 176(9):5167–5171

    Article  PubMed  CAS  Google Scholar 

  • Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454(7203):445–454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia-Faroldi G, Melo FR, Rönnberg E, Grujic M, Pejler G (2013) Active caspase-3 is stored within secretory compartments of viable mast cells. J Immunol 191(3):1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Garman SC, Kinet JP, Jardetzky TS (1998) Crystal structure of the human high-affinity IgE receptor. Cell 95(7):951–961

    Article  PubMed  CAS  Google Scholar 

  • Gibbs BF, Rathling A, Zillikens D, Huber M, Haas H (2006) Initial FcepsilonRI-mediated signal strength plays a key role in regulating basophil signaling and deactivation. J Allergy Clin Immunol 118(5):1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Gimborn K, Lessmann E, Kuppig S, Krystal G, Huber M (2005) SHIP down-regulates FcepsilonR1-induced degranulation at supraoptimal IgE or antigen levels. J Immunol 174(1):507–516

    Article  PubMed  CAS  Google Scholar 

  • Gomi K, Zhu FG, Marshall JS (2000) Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism. J Immunol 165(11):6545–6552

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Saito K, Klaman LD, Shen J, Fleming T, Wang Y et al (2001) Essential role for Gab2 in the allergic response. Nature 412(6843):186–190

    Article  PubMed  CAS  Google Scholar 

  • Haddon DJ, Antignano F, Hughes MR, Blanchet MR, Zbytnuik L, Krystal G et al (2009) SHIP1 is a repressor of mast cell hyperplasia, cytokine production, and allergic inflammation in vivo. J Immunol 183(1):228–236

    Article  PubMed  CAS  Google Scholar 

  • Heizmann B, Reth M, Infantino S (2010) Syk is a dual-specificity kinase that self-regulates the signal output from the B-cell antigen receptor. Proc Natl Acad Sci USA 107(43):18563–18568

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hernandez-Hansen V, Smith AJ, Surviladze Z, Chigaev A, Mazel T, Kalesnikoff J et al (2004) Dysregulated FcepsilonRI signaling and altered Fyn and SHIP activities in Lyn-deficient mast cells. J Immunol 173(1):100–112

    Article  PubMed  CAS  Google Scholar 

  • Hou S, Pauls SD, Liu P, Marshall AJ (2010) The PH domain adaptor protein Bam32/DAPP1 functions in mast cells to restrain FcvarepsilonRI-induced calcium flux and granule release. Mol Immunol 48(1–3):89–97

    Article  PubMed  CAS  Google Scholar 

  • Huber M (2013) Activation/Inhibition of mast cells by supra-optimal antigen concentrations. Cell Commun Sig 11(1):7

    Article  CAS  Google Scholar 

  • Huber M, Helgason CD, Damen JE, Liu L, Humphries RK, Krystal G (1998a) The Src Homology 2-Containing Inositol Phosphatase (Ship) Is the Gatekeeper of Mast Cell Degranulation. Proc Natl Acad Sci USA 95(19):11330–11335

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huber M, Helgason CD, Scheid MP, Duronio V, Humphries RK, Krystal G (1998b) Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J 17(24):7311–7319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huber M, Kalesnikoff J, Reth M, Krystal G (2002) The role of SHIP in mast cell degranulation and IgE-induced mast cell survival. Immunol Lett 82(1–2):17–21

    Article  PubMed  CAS  Google Scholar 

  • Jouvin MH, Adamczewski M, Numerof R, Letourneur O, Valle A, Kinet JP (1994) Differential control of the tyrosine kinases Lyn and Syk by the two signaling chains of the high affinity immunoglobulin E receptor. J Biol Chem 269(8):5918–5925

    PubMed  CAS  Google Scholar 

  • Kalesnikoff J, Baur N, Leitges M, Hughes MR, Damen JE, Huber M et al (2002) SHIP negatively regulates IgE + antigen-induced IL-6 production in mast cells by inhibiting NF-kappa B activity. J Immunol 168(9):4737–4746

    Article  PubMed  CAS  Google Scholar 

  • Kalesnikoff J, Huber M, Lam V, Damen JE, Zhang J, Siraganian RP et al (2001) Monomeric IgE Stimulates Signaling Pathways in Mast Cells that Lead to Cytokine Production and Cell Survival. Immunity 14(6):801–811

    Article  PubMed  CAS  Google Scholar 

  • Kalesnikoff J, Sly LM, Hughes MR, Buchse T, Rauh MJ, Cao LP et al (2003) The role of SHIP in cytokine-induced signaling. Rev Physiol Biochem Pharmacol 149:87–103

    Article  PubMed  CAS  Google Scholar 

  • Kay LJ, Yeo WW, Peachell PT (2006) Prostaglandin E2 activates EP2 receptors to inhibit human lung mast cell degranulation. Br J Pharmacol 147(7):707–713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kepley CL, Wilson BS, Oliver JM (1998) Identification of the Fc epsilonRI-activated tyrosine kinases Lyn, Syk, and Zap-70 in human basophils. J Allergy Clin Immunol 102(2):304–315

    Article  PubMed  CAS  Google Scholar 

  • Kihara H, Siraganian RP (1994) Src homology 2 domains of Syk and Lyn bind to tyrosine-phosphorylated subunits of the high affinity IgE receptor. J Biol Chem 269(35):22427–22432

    PubMed  CAS  Google Scholar 

  • Kimura T, Sakamoto H, Appella E, Siraganian RP (1997) The negative signaling molecule SH2 domain-containing inositol-polyphosphate 5-phosphatase (SHIP) binds to the tyrosine-phosphorylated beta subunit of the high affinity IgE receptor. J Biol Chem 272(21):13991–13996

    Article  PubMed  CAS  Google Scholar 

  • Laffargue M, Calvez R, Finan P, Trifilieff A, Barbier M, Altruda F et al (2002) Phosphoinositide 3-kinase gamma is an essential amplifier of mast cell function. Immunity 16(3):441–451

    Article  PubMed  CAS  Google Scholar 

  • Lamkin TD, Walk SF, Liu L, Damen JE, Krystal G, Ravichandran KS (1997) Shc interaction with Src homology 2 domain containing inositol phosphatase (SHIP) in vivo requires the Shc-phosphotyrosine binding domain and two specific phosphotyrosines on SHIP. J Biol Chem 272(16):10396–10401

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Futami M, Carroll M, Feng Y, Wang Z, Fernandez M et al (2012) Loss of SHIP-1 protein expression in high-risk myelodysplastic syndromes is associated with miR-210 and miR-155. Oncogene 31(37):4085–4094

    Article  PubMed  CAS  Google Scholar 

  • Leitges M, Gimborn K, Elis W, Kalesnikoff J, Hughes MR, Krystal G et al (2002) Protein kinase C-delta is a negative regulator of antigen-induced mast cell degranulation. Mol Cell Biol 22(12):3970–3980

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leung WH, Bolland S (2007) The inositol 5’-phosphatase SHIP-2 negatively regulates IgE-induced mast cell degranulation and cytokine production. J Immunol 179(1):95–102

    Article  PubMed  CAS  Google Scholar 

  • Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al (2003) Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 17(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Malaviya R, Ikeda T, Ross E, Abraham SN (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha [see comments]. Nature 381(6577):77–80

    Article  PubMed  CAS  Google Scholar 

  • Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784(1):159–185

    Article  PubMed  CAS  Google Scholar 

  • Marschall JS, Wilhelm T, Schuh W, Huber M (2012) MEK/Erk-based negative feedback mechanism involved in control of Steel Factor-triggered production of Kruppel-like factor 2 in mast cells. Cell Sig 24(4):879–888

    Article  CAS  Google Scholar 

  • Marshall AJ, Krahn AK, Ma K, Duronio V, Hou S (2002) TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: sustained plasma membrane recruitment triggered by the B-cell antigen receptor. Mol Cell Biol 22(15):5479–5491

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mencia-Huerta JM, Razin E, Ringel EW, Corey EJ, Hoover D, Austen KF et al (1983) Immunologic and ionophore-induced generation of leukotriene B4 from mouse bone marrow-derived mast cells. J Immunol 130(4):1885–1890

    PubMed  CAS  Google Scholar 

  • Metz M, Maurer M (2007) Mast cells–key effector cells in immune responses. Trends Immunol 28(5):234–241

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio E, Mele S, Salcini AE, Pelicci G, Lai KM, Superti-Furga G et al (1997) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J 16(4):706–716

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ming-Lum A, Shojania S, So E, McCarrell E, Shaw E, Vu D et al (2012) A pleckstrin homology-related domain in SHIP1 mediates membrane localization during Fcgamma receptor-induced phagocytosis. FASEB J 26(8):3163–3177

    Article  CAS  Google Scholar 

  • Nechushtan H, Leitges M, Cohen C, Kay G, Razin E (2000) Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase Cbeta. Blood 95(5):1752–1757

    PubMed  CAS  Google Scholar 

  • O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 106(17):7113–7118

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong CJ, Ming-Lum A, Nodwell M, Ghanipour A, Yang L, Williams DE et al (2007) Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase pathway in hematopoietic cells. Blood 110(6):1942–1949

    Article  PubMed  CAS  Google Scholar 

  • Osborne MA, Zenner G, Lubinus M, Zhang X, Songyang Z, Cantley LC et al (1996) The inositol 5’-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J Biol Chem 271(46):29271–29278

    Article  PubMed  CAS  Google Scholar 

  • Ott VL, Tamir I, Niki M, Pandolfi PP, Cambier JC (2002) Downstream of kinase, p62(dok), is a mediator of Fc gamma IIB inhibition of Fc epsilon RI signaling. J Immunol 168(9):4430–4439

    Article  PubMed  CAS  Google Scholar 

  • Pardo J, Wallich R, Ebnet K, Iden S, Zentgraf H, Martin P et al (2007) Granzyme B is expressed in mouse mast cells in vivo and in vitro and causes delayed cell death independent of perforin. Cell Death Differ 14(10):1768–1779

    Article  PubMed  CAS  Google Scholar 

  • Parravicini V, Gadina M, Kovarova M, Odom S, Gonzalez-Espinosa C, Furumoto Y et al (2002) Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat Immunol 3(8):741–748

    PubMed  CAS  Google Scholar 

  • Pejler G, Ronnberg E, Waern I, Wernersson S (2010) Mast cell proteases: multifaceted regulators of inflammatory disease. Blood 115(24):4981–4990

    Article  PubMed  CAS  Google Scholar 

  • Pennock JL, Grencis RK (2006) The mast cell and gut nematodes: damage and defence. Chem Immunol Allergy 90:128–140

    PubMed  CAS  Google Scholar 

  • Pozo-Guisado E, Campbell DG, Deak M, Alvarez-Barrientos A, Morrice NA, Alvarez IS et al (2010) Phosphorylation of STIM1 at ERK1/2 target sites modulates store-operated calcium entry. J Cell Sci 123(Pt 18):3084–3093

    Article  PubMed  CAS  Google Scholar 

  • Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492

    Article  PubMed  CAS  Google Scholar 

  • Reth M (1989) Antigen receptor tail clue [letter]. Nature 338(6214):383–384

    Article  PubMed  CAS  Google Scholar 

  • Roget K, Malissen M, Malbec O, Malissen B, Daeron M (2008) Non-T cell activation linker promotes mast cell survival by dampening the recruitment of SHIP1 by linker for activation of T cells. J Immunol 180(6):3689–3698

    Article  PubMed  CAS  Google Scholar 

  • Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM (2000) Structure, function, and biology of SHIP proteins. Genes Dev 14(5):505–520

    PubMed  CAS  Google Scholar 

  • Ronkina N, Menon MB, Schwermann J, Tiedje C, Hitti E, Kotlyarov A et al (2010) MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochem Pharmacol 80(12):1915–1920

    Article  PubMed  CAS  Google Scholar 

  • Saccani S, Pantano S, Natoli G (2002) p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol 3(1):69–75

    Article  PubMed  CAS  Google Scholar 

  • Song JS, Swann PG, Szallasi Z, Blank U, Blumberg PM, Rivera J (1998) Tyrosine phosphorylation-dependent and -independent associations of protein kinase C-delta with Src family kinases in the RBL-2H3 mast cell line: regulation of Src family kinase activity by protein kinase C-delta. Oncogene 16(26):3357–3368

    Article  PubMed  CAS  Google Scholar 

  • Stenton GR, Mackenzie LF, Tam P, Cross JL, Harwig C, Raymond J et al (2013) Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 2. Efficacy studies in allergic and pulmonary inflammation models in vivo. Br J Pharmacol 168(6):1519–1529

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swann PG, Odom S, Zhou YJ, Szallasi Z, Blumberg PM, Draber P et al (1999) Requirement for a negative charge at threonine 60 of the FcRgamma for complete activation of Syk. J Biol Chem 274(33):23068–23077

    Article  PubMed  CAS  Google Scholar 

  • Tamir I, Stolpa JC, Helgason CD, Nakamura K, Bruhns P, Daeron M et al (2000) The RasGAP-binding protein p62dok is a mediator of inhibitory FcgammaRIIB signals in B cells. Immunity 12(3):347–358

    Article  PubMed  CAS  Google Scholar 

  • Turner H, Kinet JP (1999) Signalling through the high-affinity IgE receptor FceR1. Nature 402:B24–B30

    Article  PubMed  CAS  Google Scholar 

  • Ulivieri C, Fanigliulo D, Masi G, Savino MT, Gamberucci A, Pelicci PG et al (2011) p66Shc is a negative regulator of FcepsilonRI-dependent signaling in mast cells. J Immunol 186(9):5095–5106

    Article  PubMed  CAS  Google Scholar 

  • Vigorito E, Kohlhaas S, Lu D, Leyland R (2013) miR-155: an ancient regulator of the immune system. Immunol Rev 253(1):146–157

    Article  PubMed  Google Scholar 

  • Vonakis BM, Chen H, Haleem-Smith H, Metzger H (1997) The unique domain as the site on Lyn kinase for its constitutive association with the high affinity receptor for IgE. J Biol Chem 272(38):24072–24080

    Article  PubMed  CAS  Google Scholar 

  • Vonakis BM, Gibbons S Jr, Sora R, Langdon JM, MacDonald SM (2001) Src homology 2 domain-containing inositol 5’ phosphatase is negatively associated with histamine release to human recombinant histamine-releasing factor in human basophils. J Allergy Clin Immunol 108(5):822–831

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Lai Y, Bernard JJ, Macleod DT, Cogen AL, Moss B et al (2012) Skin mast cells protect mice against vaccinia virus by triggering mast cell receptor S1PR2 and releasing antimicrobial peptides. J Immunol 188(1):345–357

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wisniewski D, Strife A, Swendeman S, Erdjument-Bromage H, Geromanos S, Kavanaugh WM et al (1999) A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood 93(8):2707–2720

    PubMed  CAS  Google Scholar 

  • Xiao W, Nishimoto H, Hong H, Kitaura J, Nunomura S, Maeda-Yamamoto M et al (2005) Positive and negative regulation of mast cell activation by Lyn via the FcepsilonRI. J Immunol 175(10):6885–6892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu R, Seger R, Pecht I (1999) Cutting edge: extracellular signal-regulated kinase activates syk: a new potential feedback regulation of Fc epsilon receptor signaling. J Immunol 163(3):1110–1114

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Lantz CS, Oettgen HC, Katona IM, Fleming T, Miyajima I et al (1997) IgE enhances mouse mast cell Fc(epsilon)RI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J Exp Med 185(4):663–672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamashita T, Mao SY, Metzger H (1994) Aggregation of the high-affinity IgE receptor and enhanced activity of p53/56lyn protein-tyrosine kinase. Proc Natl Acad Sci USA 91(23):11251–11255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang J, Ravichandran KS, Garrison JC (2010) A key role for the phosphorylation of Ser440 by the cyclic AMP-dependent protein kinase in regulating the activity of the Src homology 2 domain-containing Inositol 5′-phosphatase (SHIP1). J Biol Chem 285(45):34839–34849

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang J, Walk SF, Ravichandran KS, Garrison JC (2009) Regulation of the Src homology 2 domain-containing inositol 5′-phosphatase (SHIP1) by the cyclic AMP-dependent protein kinase. J Biol Chem 284(30):20070–20078

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zorn CN, Pardo J, Martin P, Kuhny M, Simon MM, Huber M (2013) Secretory lysosomes of mouse mast cells store and exocytose active caspase-3 in a strictly granzyme B-dependent manner. Eur J Immunol 43(12):3209–3218

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuhny, M., Zorn, C.N., Huber, M. (2014). Regulation of FcεRI Signaling by Lipid Phosphatases. In: Daeron, M., Nimmerjahn, F. (eds) Fc Receptors. Current Topics in Microbiology and Immunology, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-319-07911-0_6

Download citation

Publish with us

Policies and ethics