Skip to main content

Humanized Mice to Study FcγR Function

  • Chapter
  • First Online:
Fc Receptors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 382))

Abstract

Passive immunotherapy represents a promising therapeutic intervention for a number of neoplastic, chronic inflammatory, and infectious diseases, with several monoclonal antibodies currently under development or already in use in the clinic. While Fab–antigen interactions play a crucial role in the activity of an antibody, it has become clear that Fc-mediated effector functions are involved during antibody-mediated activities in vivo. A complete understanding of the contributions of effector activities mediated by an antibody during its in vivo function is required for the development of antibodies with improved therapeutic efficacies. Animal models that are commonly used for the preclinical evaluation of antibodies include murine and non-human primate species, whose FcγRs present substantial structural, functional, and genetic variation compared with their human counterparts. Therefore, the use of such animal models provides limited information on the role of human IgG Fc–FcγR interactions during the in vivo activities of antibodies intended for human therapeutics. In this chapter, we describe the development and evaluation of an FcγR-humanized mouse model for the study of human FcγR function in vivo. In this model, endogenous mouse FcγR genes have been deleted and human FcγRs are expressed as transgenes that faithfully recapitulate the unique pattern of human FcγR expression. Evaluation of the in vivo activities of a number of cytotoxic or therapeutic antibodies using FcγR-humanized mice provided useful insights into human IgG Fc effector function. This mouse model has become a vital preclinical model for testing therapeutic human antibodies to treat malignancies, autoimmunity, inflammation, and infectious disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bournazos S, Chow SK, Abboud N, Casadevall A, Ravetch JV (2014) Human IgG Fc domain engineering enhances antitoxin neutralizing antibody activity. J Clin Invest 124(2):725–729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bournazos S, Woof JM, Hart SP, Dransfield I (2009) Functional and clinical consequences of Fc receptor polymorphic and copy number variants. Clin Exp Immunol 157(2):244–254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Casadevall A, Dadachova E, Pirofski LA (2004) Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2(9):695–703

    Article  PubMed  CAS  Google Scholar 

  • Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10(5):301–316

    Article  PubMed  CAS  Google Scholar 

  • Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A (2011) A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333(6044):850–856

    Article  PubMed  CAS  Google Scholar 

  • Dilillo DJ, Tan GS, Palese P, Ravetch JV (2014) Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo, Nat Med 20(2):143–151

    Google Scholar 

  • Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K, Jones CT, Schoggins JW, Catanese MT, Burton DR, Law M, Rice CM, Ploss A (2011) A genetically humanized mouse model for hepatitis C virus infection. Nature 474(7350):208–211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Finkelman FD, Rothenberg ME, Brandt EB, Morris SC, Strait RT (2005) Molecular mechanisms of anaphylaxis: lessons from studies with murine models. J Allergy Clin Immunol 115(3):449–457

    Article  PubMed  CAS  Google Scholar 

  • Heijnen IA, van Vugt MJ, Fanger NA, Graziano RF, de Wit TP, Hofhuis FM, Guyre PM, Capel PJ, Verbeek JS, van de Winkel JG (1996) Antigen targeting to myeloid-specific human FcγRI/CD64 triggers enhanced antibody responses in transgenic mice. J Clin Invest 97(2):331–338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hessell AJ, Hangartner L, Hunter M, Havenith CE, Beurskens FJ, Bakker JM, Lanigan CM, Landucci G, Forthal DN, Parren PW, Marx PA, Burton DR (2007) Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449(7158):101–104

    Article  PubMed  CAS  Google Scholar 

  • Horton HM, Bernett MJ, Peipp M, Pong E, Karki S, Chu SY, Richards JO, Chen H, Repp R, Desjarlais JR, Zhukovsky EA (2010) Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood 116(16):3004–3012

    Article  PubMed  CAS  Google Scholar 

  • Horwitz JA, Halper-Stromberg A, Mouquet H, Gitlin AD, Tretiakova A, Eisenreich TR, Malbec M, Gravemann S, Billerbeck E, Dorner M, Büning H, Schwartz O, Knops E, Kaiser R, Seaman MS, Wilson JM, Rice CM, Ploss A, Bjorkman PJ, Klein F, Nussenzweig MC (2013) HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proc Natl Acad Sci USA 110(41):16538–16543

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos S, Mouquet H, Spatz LA, Diskin R, Abadir A, Zang T, Dorner M, Billerbeck E, Labitt RN, Gaebler C, Marcovecchio PM, Incesu RB, Eisenreich TR, Bieniasz PD, Seaman MS, Bjorkman PJ, Ravetch JV, Ploss A, Nussenzweig MC (2012) HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 492(7427):118–122

    Article  PubMed  CAS  Google Scholar 

  • Li F, Ravetch JV (2011) Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333(6045):1030–1034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li F, Ravetch JV (2012) Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcγ receptor engagement. Proc Natl Acad Sci USA 109(27):10966–10971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li M, Wirthmueller U, Ravetch JV (1996) Reconstitution of human FcγRIII cell type specificity in transgenic mice. J Exp Med 183(3):1259–1263

    Article  PubMed  CAS  Google Scholar 

  • McKenzie SE, Taylor SM, Malladi P, Yuhan H, Cassel DL, Chien P, Schwartz E, Schreiber AD, Surrey S, Reilly MP (1999) The role of the human Fc receptor FcγRIIA in the immune clearance of platelets: a transgenic mouse model. J Immunol 162(7):4311–4318

    PubMed  CAS  Google Scholar 

  • Mellor JD, Brown MP, Irving HR, Zalcberg JR, Dobrovic A (2013) A critical review of the role of Fcγ receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol 6:1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Natsume A, Niwa R, Satoh M (2009a) Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC. Drug Des Devel Ther 3:7–16

    PubMed  CAS  PubMed Central  Google Scholar 

  • Natsume A, Shimizu-Yokoyama Y, Satoh M, Shitara K, Niwa R (2009b) Engineered anti-CD20 antibodies with enhanced complement-activating capacity mediate potent anti-lymphoma activity. Cancer Sci 100(12):2411–2418

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DC, Scinicariello F, Attanasio R (2011) Characterization and allelic polymorphisms of rhesus macaque (Macaca mulatta) IgG Fc receptor genes. Immunogenetics 63(6):351–362

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2006) Fcγ receptors: old friends and new family members. Immunity 24(1):19–28

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2007) Antibodies Fc receptors and cancer. Curr Opin Immunol 19(2):239–245

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2012) Translating basic mechanisms of IgG effector activity into next generation cancer therapies. Cancer Immun 12:13

    PubMed  PubMed Central  Google Scholar 

  • Pietzsch J, Gruell H, Bournazos S, Donovan BM, Klein F, Diskin R, Seaman MS, Bjorkman PJ, Ravetch JV, Ploss A, Nussenzweig MC (2012) A mouse model for HIV-1 entry. Proc Natl Acad Sci USA 109(39):15859–15864

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV (1990) Organization of the human and mouse low-affinity FcγR genes: duplication and recombination. Science 248(4956):732–735

    Article  PubMed  CAS  Google Scholar 

  • Rogers KA, Scinicariello F, Attanasio R (2006) IgG Fc receptor III homologues in nonhuman primate species: genetic characterization and ligand interactions. J Immunol 177(6):3848–3856

    Article  PubMed  CAS  Google Scholar 

  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740

    Article  PubMed  CAS  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473

    Article  PubMed  CAS  Google Scholar 

  • Smith P, DiLillo DJ, Bournazos S, Li F, Ravetch JV (2012) Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc Natl Acad Sci USA 109(16):6181–6186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tamura K, Shimizu C, Hojo T, Akashi-Tanaka S, Kinoshita T, Yonemori K, Kouno T, Katsumata N, Ando M, Aogi K, Koizumi F, Nishio K, Fujiwara Y (2011) FcγR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann Oncol 22(6):1302–1307

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Gordon M, Schultheis AM, Yang DY, Nagashima F, Azuma M, Chang HM, Borucka E, Lurje G, Sherrod AE, Iqbal S, Groshen S, Lenz HJ (2007) FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 25(24):3712–3718

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey V. Ravetch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bournazos, S., DiLillo, D.J., Ravetch, J.V. (2014). Humanized Mice to Study FcγR Function. In: Daeron, M., Nimmerjahn, F. (eds) Fc Receptors. Current Topics in Microbiology and Immunology, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-319-07911-0_11

Download citation

Publish with us

Policies and ethics