Skip to main content

IgA, IgA Receptors, and Their Anti-inflammatory Properties

  • Chapter
  • First Online:
Fc Receptors

Abstract

Immunoglobulin A (IgA) is the most abundantly produced antibody isotype in mammals. The primary function of IgA is to maintain homeostasis at mucosal surfaces and play a role in immune protection. IgA functions mainly through interaction with multiple receptors including IgA Fc receptor I (FcαRI), transferrin receptor 1 (CD71), asialoglycoprotein receptor (ASGPR), Fcα/μR, FcRL4, and DC-SIGN/SIGNR1. In this review we discuss recent data demonstrating anti-inflammatory functions of IgA through two receptors, the FcαRI and DC-SIGN/SIGNR1 interactions in the regulation of immunity. Serum monomeric IgA is able to mediate an inhibitory signal following the interaction with FcαRI. It results in partial phosphorylation of its FcRγ-ITAM and the recruitment of the tyrosine phosphatase SHP-1, which induces cell inhibition following the formation of intracellular clusters named inhibisomes. In contrast, cross-linking of FcαRI by multimeric ligands induces a full phosphorylation of the FcRγ-ITAM leading to the recruitment of the tyrosine kinase Syk and cell activation. In addition, secretory IgA can mediate a potent anti-inflammatory function following the sugar-dependent interaction with SIGNR1 on dendritic cells which induces an immune tolerance via regulatory T cell expansion. Overall, the anti-inflammatory effect of serum and secretory IgA plays a crucial role in the physiology and in the prevention of tissue damage in multiple autoimmune and inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • al-Attas RA, Rahi AH (1998) Primary antibody deficiency in Arabs: first report from eastern Saudi Arabia. J Clin Immunol 18:368–371

    Google Scholar 

  • Bakema JE, van Egmond M (2011) The human immunoglobulin A Fc receptor FcalphaRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol 4:612–624

    Article  PubMed  CAS  Google Scholar 

  • Baumann J, Park CG, Mantis NJ (2010) Recognition of secretory IgA by DC-SIGN: implications for immune surveillance in the intestine. Immunol Lett 131:59–66

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berthelot L, Papista C, Maciel TT, Biarnes-Pelicot M, Tissandie E, Wang PH, Tamouza H, Jamin A, Bex-Coudrat J, Gestin A et al (2012) Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med 209:793–806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beyer T, Lohse S, Berger S, Peipp M, Valerius T, Dechant M (2009) Serum-free production and purification of chimeric IgA antibodies. J Immunol Methods 346:26–37

    Article  PubMed  CAS  Google Scholar 

  • Blank U, Launay P, Benhamou M, Monteiro RC (2009) Inhibitory ITAMs as novel regulators of immunity. Immunol Rev 232:59–71

    Article  PubMed  CAS  Google Scholar 

  • Boehm MK, Woof JM, Kerr MA, Perkins SJ (1999) The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J Mol Biol 286:1421–1447

    Article  PubMed  CAS  Google Scholar 

  • Caparros E, Munoz P, Sierra-Filardi E, Serrano-Gomez D, Puig-Kroger A, Rodriguez-Fernandez JL, Mellado M, Sancho J, Zubiaur M, Corbi AL (2006) DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 107:3950–3958

    Article  PubMed  CAS  Google Scholar 

  • Carayannopoulos L, Hexham JM, Capra JD (1996) Localization of the binding site for the monocyte immunoglobulin (Ig) A-Fc receptor (CD89) to the domain boundary between Calpha2 and Calpha3 in human IgA1. J Exp Med 183:1579–1586

    Article  PubMed  CAS  Google Scholar 

  • Chevailler A, Monteiro RC, Kubagawa H, Cooper MD (1989) Immunofluorescence analysis of IgA binding by human mononuclear cells in blood and lymphoid tissue. J Immunol 142:2244–2249

    PubMed  CAS  Google Scholar 

  • Diana J, Moura IC, Vaugier C, Gestin A, Tissandie E, Beaudoin L, Corthesy B, Hocini H, Lehuen A, Monteiro RC (2013) Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice. J Immunol 191:2335–2343

    Article  PubMed  CAS  Google Scholar 

  • Duchez S, Amin R, Cogne N, Delpy L, Sirac C, Pascal V, Corthesy B, Cogne M (2010) Premature replacement of mu with alpha immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation. Proc Natl Acad Sci USA 107:3064–3069

    Article  PubMed  PubMed Central  Google Scholar 

  • Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T (2002) Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298:1424–1427

    Article  PubMed  CAS  Google Scholar 

  • Hammarstrom L, Vorechovsky I, Webster D (2000) Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol 120:225–231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hatanaka T, Ohzono S, Park M, Sakamoto K, Tsukamoto S, Sugita R, Ishitobi H, Mori T, Ito O, Sorajo K et al (2012) Human IgA-binding peptides selected from random peptide libraries: affinity maturation and application in IgA purification. J Biol Chem 287:43126–43136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang YT, Wright A, Gao X, Kulick L, Yan H, Lamm ME (2005) Intraepithelial cell neutralization of HIV-1 replication by IgA. J Immunol 174:4828–4835

    Article  PubMed  CAS  Google Scholar 

  • Jacob CM, Pastorino AC, Fahl K, Carneiro-Sampaio M, Monteiro RC (2008) Autoimmunity in IgA deficiency: revisiting the role of IgA as a silent housekeeper. J Clin Immunol 28(Suppl 1):S56–S61

    Article  PubMed  CAS  Google Scholar 

  • Jandrot-Perrus M, Busfield S, Lagrue AH, Xiong X, Debili N, Chickering T, Le Couedic JP, Goodearl A, Dussault B, Fraser C et al (2000) Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood 96:1798–1807

    PubMed  CAS  Google Scholar 

  • Kadaoui KA, Corthesy B (2007) Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer’s patches with restriction to mucosal compartment. J Immunol 179:7751–7757

    Article  PubMed  CAS  Google Scholar 

  • Kanamaru Y, Pfirsch S, Aloulou M, Vrtovsnik F, Essig M, Loirat C, Deschenes G, Guerin-Marchand C, Blank U, Monteiro RC (2008) Inhibitory ITAM signaling by Fc alpha RI-FcR gamma chain controls multiple activating responses and prevents renal inflammation. J Immunol 180:2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Kerr MA, Stewart WW, Bonner BC, Greer MR, MacKenzie SJ, Steele MG (1995) The diversity of leucocyte IgA receptors. Contrib Nephrol 111:60–64 (Discussion 65)

    Google Scholar 

  • Kremer EJ, Kalatzis V, Baker E, Callen DF, Sutherland GR, Maliszewski CR (1992) The gene for the human IgA Fc receptor maps to 19q13.4. Hum Genet 89:107–108

    Article  PubMed  CAS  Google Scholar 

  • Kubagawa H, Shimada T, Shimo K, Lassoued K, Monteiro RC, Cooper MD (1997) CD89 Workshop Panel report. Leucocyte Typing VI, pp 1028–1029

    Google Scholar 

  • Launay P, Patry C, Lehuen A, Pasquier B, Blank U, Monteiro RC (1999) Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRgamma association and protects against degradation of bound ligand. J Biol Chem 274:7216–7225

    Article  PubMed  CAS  Google Scholar 

  • Launay P, Grossetete B, Arcos-Fajardo M, Gaudin E, Torres SP, Beaudoin L, Patey-Mariaud de Serre N, Lehuen A, Monteiro RC (2000) Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J Exp Med 191:1999–2009

    Google Scholar 

  • Low TL, Liu YS, Putnam FW (1976) Structure, function, and evolutionary relationships of Fc domains of human immunoglobulins A, G, M, and E. Science 191:390–392

    Article  PubMed  CAS  Google Scholar 

  • Lum LG, Muchmore AV, O’Connor N, Strober W, Blaese RM (1979) Fc receptors for IgA on human B, and human non-B, non-T lymphocytes. J Immunol 123:714–719

    PubMed  CAS  Google Scholar 

  • Maliszewski CR, March CJ, Schoenborn MA, Gimpel S, Shen L (1990) Expression cloning of a human Fc receptor for IgA. J Exp Med 172:1665–1672

    Article  PubMed  CAS  Google Scholar 

  • Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthesy B, Neutra MR (2002) Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J Immunol 169:1844–1851

    Article  PubMed  CAS  Google Scholar 

  • Mantis NJ, Rol N, Corthesy B (2011) Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4:603–611

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mazanec MB, Nedrud JG, Kaetzel CS, Lamm ME (1993) A three-tiered view of the role of IgA in mucosal defense. Immunol Today 14:430–435

    Article  PubMed  CAS  Google Scholar 

  • Mestecky J, Moldoveanu Z, Russell MW (2005) Immunologic uniqueness of the genital tract: challenge for vaccine development. Am J Reprod Immunol 53:208–214

    Article  PubMed  CAS  Google Scholar 

  • Monteiro RC (2010) Role of IgA and IgA fc receptors in inflammation. J Clin Immunol 30:1–9

    Article  PubMed  CAS  Google Scholar 

  • Monteiro RC, van de Winkel JG (2003) IgA Fc receptors. Annu Rev Immunol 21:177–204

    Article  PubMed  CAS  Google Scholar 

  • Monteiro RC, Kubagawa H, Cooper MD (1990) Cellular distribution, regulation, and biochemical nature of an Fc alpha receptor in humans. J Exp Med 171:597–613

    Article  PubMed  CAS  Google Scholar 

  • Morton HC, van Zandbergen G, van Kooten C, Howard CJ, van de Winkel JG, Brandtzaeg P (1999) Immunoglobulin-binding sites of human FcalphaRI (CD89) and bovine Fcgamma2R are located in their membrane-distal extracellular domains. J Exp Med 189:1715–1722

    Article  PubMed  CAS  Google Scholar 

  • Moura IC, Centelles MN, Arcos-Fajardo M, Malheiros DM, Collawn JF, Cooper MD, Monteiro RC (2001) Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 194:417–425

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moura IC, Arcos-Fajardo M, Sadaka C, Leroy V, Benhamou M, Novak J, Vrtovsnik F, Haddad E, Chintalacharuvu KR, Monteiro RC (2004) Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol 15:622–634

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47

    Article  PubMed  CAS  Google Scholar 

  • Norderhaug IN, Johansen FE, Krajci P, Brandtzaeg P (1999) Domain deletions in the human polymeric Ig receptor disclose differences between its dimeric IgA and pentameric IgM interaction. Eur J Immunol 29:3401–3409

    Article  PubMed  CAS  Google Scholar 

  • Pabst O (2012) New concepts in the generation and functions of IgA. Nat Rev Immunol 12:821–832

    Article  PubMed  CAS  Google Scholar 

  • Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C, Henin D, Benhamou M, Pretolani M, Blank U et al (2005) Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 22:31–42

    Article  PubMed  CAS  Google Scholar 

  • Patry C, Sibille Y, Lehuen A, Monteiro RC (1996) Identification of Fc alpha receptor (CD89) isoforms generated by alternative splicing that are differentially expressed between blood monocytes and alveolar macrophages. J Immunol 156:4442–4448

    PubMed  CAS  Google Scholar 

  • Peterson DA, McNulty NP, Guruge JL, Gordon JI (2007) IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2:328–339

    Article  PubMed  CAS  Google Scholar 

  • Pfirsch-Maisonnas S, Aloulou M, Xu T, Claver J, Kanamaru Y, Tiwari M, Launay P, Monteiro RC, Blank U (2011) Inhibitory ITAM signaling traps activating receptors with the phosphatase SHP-1 to form polarized “inhibisome” clusters. Sci Signal 4:ra24

    Google Scholar 

  • Phalipon A, Corthesy B (2003) Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol 24:55–58

    Article  PubMed  CAS  Google Scholar 

  • Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B (2002) Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17:107–115

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro da Silva F, Aloulou M, Benhamou M, Monteiro RC (2008) Inhibitory ITAMs: a matter of life and death. Trends Immunol 29:366–373

    Article  PubMed  Google Scholar 

  • Pleass RJ, Dunlop JI, Anderson CM, Woof JM (1999) Identification of residues in the CH2/CH3 domain interface of IgA essential for interaction with the human fcalpha receptor (FcalphaR) CD89. J Biol Chem 274:23508–23514

    Article  PubMed  CAS  Google Scholar 

  • Puchelle E, Zahm JM, Girard F, Bertrand A, Polu JM, Aug F, Sadoul P (1980) Mucociliary transport in vivo and in vitro. Relations to sputum properties in chronic bronchitis. Eur J Respir Dis 61:254–264

    PubMed  CAS  Google Scholar 

  • Smith PD, Smythies LE, Mosteller-Barnum M, Sibley DA, Russell MW, Merger M, Sellers MT, Orenstein JM, Shimada T, Graham MF et al (2001) Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol 167:2651–2656

    Article  PubMed  CAS  Google Scholar 

  • van der Steen L, Tuk CW, Bakema JE, Kooij G, Reijerkerk A, Vidarsson G, Bouma G, Kraal G, de Vries HE, Beelen RH et al (2009) Immunoglobulin A: Fc(alpha)RI interactions induce neutrophil migration through release of leukotriene B4. Gastroenterology 137(2018–2029):e2011–e2013

    Google Scholar 

  • van Egmond M, Hanneke van Vuuren AJ, van de Winkel JG (1999) The human Fc receptor for IgA (Fc alpha RI, CD89) on transgenic peritoneal macrophages triggers phagocytosis and tumor cell lysis. Immunol Lett 68:83–87

    Google Scholar 

  • Vidarsson G, Overbeeke N, Stemerding AM, van den Dobbelsteen G, van Ulsen P, van der Ley P, Kilian M, van de Winkel JG (2005) Working mechanism of immunoglobulin A1 (IgA1) protease: cleavage of IgA1 antibody to Neisseria meningitidis PorA requires de novo synthesis of IgA1 Protease. Infect Immun 73:6721–6726

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams RC, Gibbons RJ (1972) Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science 177:697–699

    Article  PubMed  CAS  Google Scholar 

  • Wilson TJ, Fuchs A, Colonna M (2012) Cutting edge: human FcRL4 and FcRL5 are receptors for IgA and IgG. J Immunol 188:4741–4745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wines BD, Hulett MD, Jamieson GP, Trist HM, Spratt JM, Hogarth PM (1999) Identification of residues in the first domain of human Fc alpha receptor essential for interaction with IgA. J Immunol 162:2146–2153

    PubMed  CAS  Google Scholar 

  • Woof JM, Kerr MA (2006) The function of immunoglobulin A in immunity. J Pathol 208:270–282

    Article  PubMed  CAS  Google Scholar 

  • Woof JM, Mestecky J (2005) Mucosal immunoglobulins. Immunol Rev 206:64–82

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Zhao Q, Zhu L, Zhang W (2013) The three complementarity-determining region-like loops in the second extracellular domain of human Fc alpha/mu receptor contribute to its binding of IgA and IgM. Immunobiology 218:798–809

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Agence Nationale de la Recherche (ANR grants MIEN-2009 and BLANC International-2012) and from the LabEx Inflamex. S.B.M. was supported by a grant from the French Foundation ARC (PDF20100601037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato C. Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mkaddem, S.B., Christou, I., Rossato, E., Berthelot, L., Lehuen, A., Monteiro, R.C. (2014). IgA, IgA Receptors, and Their Anti-inflammatory Properties. In: Daeron, M., Nimmerjahn, F. (eds) Fc Receptors. Current Topics in Microbiology and Immunology, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-319-07911-0_10

Download citation

Publish with us

Policies and ethics