Skip to main content

Geochemical Trends of Archaean Magmatism

  • Chapter
  • First Online:
  • 1224 Accesses

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 9))

Abstract

Comprehensive studies of well-exposed supracrustal sequences, including the Barberton Greenstone Belt, eastern Kaapvaal Craton, and Pilbara greenstone belts, northwestern Western Australia, allow detailed resolution of the relations between volcanic stratigraphy, isotopic ages and geochemistry, revealing systematic evolutionary trends of mantle and crust. This includes long term ~3.5 to ~3.2 Ga depletion of the source mantle in high field strength elements (HFS – Ti, Nb, rare earth elements) and a decrease in the ratio of Light REE to the heavy REE, as well as shorter term cycles displaying depletion and in some instances enrichment in the HFS elements, the latter likely implying juvenile mantle increments. Post 3.2 Ga basalts commonly display stronger LREE/HREE fractionation and Al-depleted compositions represented by high CaO/Al2O3 and TiO2/Al2O3, implying increased importance of garnet in mantle residues and thereby cooler higher P/T (pressure/temperature) regimes. Felsic volcanic sequences ranging from andesites and dacites at low stratigraphic levels to rhyolites and K-rhyolites at higher levels represent increasingly fractionated compositions with time. Similar trends are shown by Archaean plutonic suites, an example being the increasing importance of garnet fractionation with time from ~3.55 to ~3.45 Ga implied by an increase in Sr and therefore the plagioclase component in TTG magmas (Moyen JF, Stevens G, Kisters AFM, Belcher RW, TTG plutons of the Barberton granitoid-greenstone terrain, South Africa. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology 15. Elsevier, Amsterdam, pp 607–667, 2007).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anhaeusser CR (1973) The evolution of the early Precambrian crust of southern Africa. Philos Trans R Soc Lond A273:359–388

    Article  Google Scholar 

  • Anhaeusser CR (1974) Early Precambrian rocks in the vicinity of the Bosmanskop syenite pluton, Barberton Mountain Land, South Africa (abstract). In: Geology and geochemistry of the oldest Precambrian rocks symposium, University of Illinois, Champaign

    Google Scholar 

  • Anhaeusser CR, Mason R, Viljoen MJ, Viljoen RP (1969) A reappraisal of some aspects of Precambrian shield geology. Geol Soc Am Bull 80:2175–2200

    Article  Google Scholar 

  • Archibald NJ, Bettenay LF, Binns RA, Groves DI, Gunthorpe RJ (1978) The evolution of Archaean greenstone terrains Eastern Goldfields Province, Western Australia. Precambrian Res 6:103–131

    Article  Google Scholar 

  • Armstrong RL (1968) A model of the evolution of strontium and lead isotopes in a dynamic Earth. Rev Geophys 6:175–199

    Article  Google Scholar 

  • Arth JG (1976) Behavior of trace elements during magmatic processes: a summary of theoretical models and their application. J Res U S Geol Surv 4:41–47

    Google Scholar 

  • Arth JG, Barker F (1976) Rare earth partitioning between hornblende and dacitic liquid and implication for the genesis of trondhjemitic–tonalitic magmas. Geology 4:534–536

    Article  Google Scholar 

  • Arth JG, Hanson GN (1975) Geochemistry and origin of the Early Precambrian crust of North-eastern Minnesota. Geochim Cosmochim Acta 39:325–362

    Article  Google Scholar 

  • Arth JG, Barker F, Peterman ZE, Fridman I (1978) Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of south-west Finland and its implications for the origin of tonalitic and trondhjemitic magmas. J Petrol 19:289–316

    Article  Google Scholar 

  • Baragar WRA, Goodwin AM (1969) Andesites and Archaean volcanism in the Canadian Shield. Oregon Dept Geol Miner Ind 65:121–142

    Google Scholar 

  • Baragar WRA, McGlynn JC (1976) Early Archaean basement in the Canadian Shield: a review of the evidence. Geological Survery of Canada Paper 14. Geological Survery of Canada, Ottawa

    Google Scholar 

  • Barker F (1979) Trondhjemite: a definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 1–12

    Chapter  Google Scholar 

  • Black LP, Gale N, Moorbath S, Pankhurst RT, McGregor VR (1971) Isotope dating of very early Precambrian amphibolite facies from the Godthab District, west Greenland. Earth Planet Sci Lett 12:245–259

    Article  Google Scholar 

  • Bridgwater D, Collerson KD (1976) The major petrological and geochemical characteristics of the 3600 m.y. old Uivak Gneiss from Labrador. Contrib Mineral Petrol 54:43–60

    Article  Google Scholar 

  • Bridgwater D, Collerson KD (1977) On the origin of early Archaean gneisses. Contrib Mineral Petrol 62:179–190

    Article  Google Scholar 

  • Bridgwater D, McGregor VR, Myers JS (1974) A horizontal tectonic regime in the Archaean of Greenland and its implications for early crustal thickening. Precambrian Res 1:179–197

    Article  Google Scholar 

  • Burke K, Dewey JF, Kidd WS (1976) Dominance of horizontal movements, arcs and microcontinental collisions during the later premobile regime. In: Windley BF (ed) Early history of the Earth. Wiley, London, pp 113–130

    Google Scholar 

  • Cameron WE, Nisbet EG, Dietrich VJ (1979) Boninites, komatiites and ophiolitic basalts. Nature 280:550–553

    Article  Google Scholar 

  • Capdevila R, Goodwin AM, Ujike O, Gorton MP (1982) Trace-element geochemistry of Archean volcanic rocks and crystal growth in southwestern Abitibi Belt, Canada. Geology 10:418–422

    Article  Google Scholar 

  • Carmichael ISE, Turner FJ, Verhoogen J (1974) Igneous petrology. McGraw-Hill, New York

    Google Scholar 

  • Champion DC, Smithies RH (1999) Archaean granites of the Yilgarn and Pilbara cratons: secular changes. In: Barbarin B (ed) The origin of granites and related rocks, fourth Hutton symposium abstracts, 137. BRGM, Clermont-Ferrand

    Google Scholar 

  • Champion DC, Smithies RH (2007) Geochemistry of paleoarchaean granites of the East Pilbara terrain, Pilbara Craton, Western Australia: implications for early Archaean crustal growth. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, Developments in Precambrian geology 15. Elsevier, Amsterdam, pp 339–409

    Google Scholar 

  • Coleman RG, Peterman ZE (1975) Oceanic plagiogranites. J Geophys Res 80:1099–1108

    Article  Google Scholar 

  • Collerson KD, Bridgwater D (1979) Metamorphic development of early Archaean tonalitic and trondhjemitic gneisses: Saglek area, Labrador. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 205–274

    Chapter  Google Scholar 

  • Collerson KD, Fryer BJ (1978) The role of fluids in the formation and subsequent development of early continental crust. Contrib Mineral Petrol 67:151–169

    Article  Google Scholar 

  • Condie KC, Hunter DR (1976) Trace element geochemistry of Archaean granitic rocks from the Barberton region, south Africa. Earth Planet Sci Lett 29:389–400

    Article  Google Scholar 

  • Davies RD, Allsopp HL (1976) Strontium isotope evidence relating to the evolution of the lower Precambrian crust in Swaziland. Geology 4:553–556

    Article  Google Scholar 

  • DeLaeter JR, Blockley JG (1972) Granite ages within the Archaean Pilbara Block, Western Australia. J Geol Soc Aust 19:363–370

    Article  Google Scholar 

  • DeLaeter JR, Lewis JD, Blockley JG (1975) Granite ages within the Shaw batholith, Pilbara region, Western Australia. Geol Surv West Aust Ann Rep 1974:73–79

    Google Scholar 

  • Drury SA (1978) REE distribution in high-grade Archaean gneiss complex in Scotland: implications for the genesis of ancient sialic crust. Precambrian Res 7:237–257

    Article  Google Scholar 

  • Floyd PA, Winchester JA (1975) Magma type and tectonic setting discrimination using immobile elements. Earth Planet Sci Lett 27:211–218

    Article  Google Scholar 

  • Folinsbee RE, Baadsgaard H, Cumming GL, Green DC (1968) A very ancient island arc. In: Knopoff et al (eds) The crust and upper mantle of the Pacific Area. American Geophysical Union Monograph 12. American Geophysical Union, Washington, pp 441–448

    Google Scholar 

  • Friend CRL, Hughs DJ (1977) Archaean aluminous ultrabasic rocks with primary igneous textures from the Fiskenaesset region, southern west Greenland. Earth Planet Sci Lett 36:157–167

    Article  Google Scholar 

  • Glikson AY (1970) Geosynclinal evolution and geochemical affinities of early Precambrian systems. Tectonophysics 9:397–433

    Article  Google Scholar 

  • Glikson AY (1976a) Trace element geochemistry and origin of early Precambrian acid igneous series, Barberton Mountain Land, Transvaal. Geochim Cosmochim Acta 40:1261–1280

    Article  Google Scholar 

  • Glikson AY (1976b) Stratigraphy and evolution of primary and secondary greenstones: significance of data from Shields of the southern hemisphere. In: Windley BF (ed) The early history of the earth. Wiley, London, pp 257–277

    Google Scholar 

  • Glikson AY (1976c) Archaean to early Proterozoic shield elements: relevance of plate tectonics. Geol Assoc Can Spec Publ 14:489–516

    Google Scholar 

  • Glikson AY (1979a) Early Precambrian tonalite-trondhjemite sialic nuclei. Earth Sci Rev 15:1–73

    Article  Google Scholar 

  • Glikson AY (1979b) On the foundation of the Sargur Group. J Geol Soc India 20:248–255

    Google Scholar 

  • Glikson AY, Hickman AH (1981) Geochemical stratigraphy of Archaean mafic-ultramafic volcanic successions, eastern Pilbara Block, Western Australia. In: Glover JE, Groves DI (eds) Archaean geology. Geological Society of Australia special publications 7. Geological Society of Australia, Sydney, pp 287–300

    Google Scholar 

  • Glikson AY, Jahn B (1985) REE and LIL elements, eastern Kaapvaal shield, south Africa: evidence of crustal evolution by 3-stage melting. Geol Soc Can Spec Pap 28:303–324

    Google Scholar 

  • Glikson AY, Lambert IB (1976) Vertical zonation and petrogenesis of the early Precambrian crust in Western Australia. Tectonophysics 30:55–89

    Article  Google Scholar 

  • Glikson AY, Sheraton JW (1972) Early Precambrian trondhjemitic suites in Western Australia and northwestern Scotland and the geochemical evolution of shields. Earth Planet Sci Lett 17:227–242

    Article  Google Scholar 

  • Glikson AY, Davy R, Hickman AH, Pride C, Jahn B (1987) Trace elements geochemistry and petrogenesis of Archaean felsic igneous units, Pilbara Block, Western Australia. Australian Bureau of Mineral Resources Record 87/30

    Google Scholar 

  • Glikson AY, Davy R, Hickman AH (1989) Trace metal distribution in basalts, Pilbara craton, Western Australia, with stratigraphic-geochemical implications. BMR Record 1991/46

    Google Scholar 

  • Green DH (1972) Archaean greenstone belts may include equivalents of lunar maria? Earth Planet Sci Lett 15:263–270

    Article  Google Scholar 

  • Green DC, Baadsgaard H (1971) Temporal evolution and petrogenesis of an Archaean crustal segment at Yellowknife, NWT. Can J Petrol 12:177–217

    Article  Google Scholar 

  • Green DH, Ringwood AE (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim Cosmochim Acta 31:767–833

    Article  Google Scholar 

  • Green TH, Ringwood AE (1977) Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol 18:105–162

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precambrian Res 127:19–41

    Article  Google Scholar 

  • Griffin WL, Belousova EA, O’Neill C, O’Reilly SY, Malkovets V, Pearson NJ, Spetsius S, Wilde SA (2014) The world turns over: Hadean–Archean crust–mantle evolution. Lithos 189:2–15

    Article  Google Scholar 

  • Hallberg JA (1971) Geochemistry of Archaean Volcanic Belts in the Eastern Goldfields Region of Western Australia. J Petrol 13:45–56

    Article  Google Scholar 

  • Hanson GN (1975) Geochemistry and origin of the early Precambrian crust of northeastern Minnesota. Geochim Cosmochim Acta 39:325–362

    Article  Google Scholar 

  • Hietanen A (1975a) Generation of potassium-poor magmas in the northern Sierra Nevada and the Sveconfennian of Finland. U S Geol Surv J Res 3:631–645

    Google Scholar 

  • Hietanen A (1975b) Generation of K-poor magma in the northern Sierra Nevada and the Svecofennian of Finland. J Res U S Geol Surv 3:631–646

    Google Scholar 

  • Hunter DR (1974) Crustal development in the Kaapval craton: part 1 – the Archaean. Precambrian Res 1:259–294

    Article  Google Scholar 

  • Hunter DR, Barker F, Millard HT (1978) The geochemical nature of the Archacan ancient gneiss complex and granodiorite suite, Swaziland: a preliminary study. Precambrian Res 7:105–127

    Article  Google Scholar 

  • Hurley PM, Hughs H, Faure G, Fairbairn HW, Pinson WH (1962) Radiogenic strontium 87 model of continent formation. J Geophys Res 67:5315–5334

    Article  Google Scholar 

  • Hurst RW (1978) Sr evolution in west Greenland–Labrador craton: a model for early Rb depletion in the mantle. Geochim Cosmochim Acta 42:39–44

    Article  Google Scholar 

  • Jahn B, Vidal P, Tilton G (1979) Archaean mantle heterogeneity: evidence from chemical and isotopic abundances in Archaean igneous rocks. Philos Trans R Soc Lond A297:353–364

    Google Scholar 

  • Jahn B, Gruau G, Glikson AY (1982) Onverwacht Group komatiites, South Africa: REE geochemistry, Sm-Nd age and mantle evolution. Contrib Mineral Petrol 80:25–40

    Article  Google Scholar 

  • Kushiro I (1972) Effect of water on the composition of magmas formed at high pressures. J Petrol 13:311–334

    Article  Google Scholar 

  • Lambert RSJ, Holland JG (1976) Amitsoq gneiss geochemistry: preliminary observations. In: Windley BF (ed) Early history of the Earth. Wiley, London, pp 191–202

    Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Martin H, Moyen JF (2002) Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of the Earth. Geology 30:319–322

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Moorbath S (1977) Ages, isotopes and the evolution of the Precambrian continental crust. Chem Geol 20:151–187

    Article  Google Scholar 

  • Moorbath S, O’Nions RK, Pankhurst RJ (1973) Early Archaean age for the Isua Iron Formation, West Greenland. Nature 245:138–139

    Article  Google Scholar 

  • Moorbath S, Wilson JF, Cotterill P (1976) Early Archaean age for the Sebakwian Group at Selukwe, Rhodesia. Nature 264:536–538

    Article  Google Scholar 

  • Moyen JF, Martin H (2012) Forty years of TTG research. Lithos 148:312–336

    Article  Google Scholar 

  • Moyen JF, Stevens G, Kisters AFM, Belcher RW (2007) TTG plutons of the Barberton granitoid-greenstone terrain, South Africa. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, Developments in Precambrian geology 15. Elsevier, Amsterdam, pp 607–667

    Google Scholar 

  • Moyen JF, Champion D, Smithies RH (2009) The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Trans R Soc Edinb 100:35–50

    Google Scholar 

  • Moyen JF, Smithies RH, Champion DC (2011) Granitoids in the East Pilbara craton and the Barberton Granite-Greenstone terrain record different modes of Archaean crustal accretion. Seventh Hutton symposium on granites and related rocks, Avila, Spain, July 2011

    Google Scholar 

  • Mysen BO, Boettcher AL (1975) Melting of a hydrous mantle, I – phase relations of natural periodotite at high pressures and temperatures with controlled activities of water, CO2 and H. J Petrol 16:520–548

    Article  Google Scholar 

  • Naqvi SM (1976) Physical – chemical conditions during the Archaean as indicated by Dharwar geochemistry. In: Windley BF (ed) Early history of the Earth. Wiley, London, pp 289–298

    Google Scholar 

  • Nutman AP, Friend CRL, Horie K, Hidaka H (2007) The Itsaq gneiss complex of southern west Greenland and the construction of Archaean crust at convergent plate boundaries. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, vol 15, Developments in Precambrian geology. Elsevier, Amsterdam, pp 187–218

    Chapter  Google Scholar 

  • Oversby VM (1976) Isotopic ages and geochemistry of Archaean acid igneous rocks from the Pitbara, Western Australia. Geochim Cosmochim Acta 40:817–829

    Article  Google Scholar 

  • Pearce JA, Gorman BE, Birkett TC (1977a) The relationships between major element geochemistry and tectonic environments of basic and intermediate volcanic rocks. Earth Planet Sci Lett 36:121–132

    Article  Google Scholar 

  • Pearce TH, Gorman BE, Birkett TC (1977b) The relations between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth Planet Sci Lett 36:121–132

    Article  Google Scholar 

  • Pidgeon RT (1978) Geochronological investigations of granite batholiths of the Archaean granite – greenstone terrain of the Pilbara Block. Western Australia. In: Smith IEM, Williams JG (eds) Proceedings of the 1978 Archaean geochemistry conference. University of Toronto, Ontario, pp 360–362

    Google Scholar 

  • Sheraton JW (1970) The origin of the Lewisian gneisses of northwest Scotland, with particular reference to the Drumbeg area, Sutherland. Earth Planet Sci Lett 8:301–310

    Article  Google Scholar 

  • Smith IEM (1980) Geochemical evolution in the Blake River Group, Abitibi Greenstone Belt, Superior Province. Can J Earth Sci 17:1292–1299

    Article  Google Scholar 

  • Smithies RH (2000) The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Article  Google Scholar 

  • Smithies RH (2002) Archaean boninite-like rocks in an intra-cratonic setting. Earth Planet Sci Lett 197:19–34

    Article  Google Scholar 

  • Smithies RH, Champion DC (2000) The Archaean high-Mg diorite suite: links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth. J Petrol 41:1653–1671

    Article  Google Scholar 

  • Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precambrian Res 127:89–101

    Article  Google Scholar 

  • Smithies RH, Van Kranendonk MJ, Champion DC (2005) It started with a plume. Earth Planet Sci Lett 238:284–297

    Article  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ, Hickman AH (2007a) Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia. Geological Survey of Western Australia Report 104

    Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ (2007b) The oldest well-preserved felsic volcanic rocks on Earth: geochemical clues to the early evolution of the Pilbara supergroup and implications for the growth of a paleoarchaean protocontinent. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. pp 339–366

    Google Scholar 

  • Stauffer MR, Mukherjee C, Koo J (1975) The Amisk Group: an Aphebian (?) island arc deposit. Can J Earth Sci 12:2021–2035

    Article  Google Scholar 

  • Sun SS (1987) Chemical composition of Archaean komatiites: implications for early history of the earth and mantle evolution. J Volcanol Geotherm Res 32:67–82

    Article  Google Scholar 

  • Sun SS, Nesbitt RW (1977) Chemical heterogeneity of the Archaean mantle, composition of the Earth and mantle evolution. Earth Planet Sci Lett 35:429–448

    Article  Google Scholar 

  • Sun SS, Nesbitt RW (1978) Petrogenesis of Archean Ultrabasic and basic volcanics: evidence from rare earth elements. Contrib Mineral Petrol 65(301):325

    Google Scholar 

  • Tarney J, Windley BF (1977) Chemistry, thermal gradients and evolution of the lower continental crust. J Geol Soc Lond 134:153–172

    Article  Google Scholar 

  • Tarney J, Dalziel IWD, DeWit MJ (1976) Marginal basin ‘Rocas Verdes’ complex from south Chile: a model for Archaean greenstone belt formation. In: Windley BF (ed) Early history of the Earth. Wiley, London, pp 131–146

    Google Scholar 

  • Taylor SR (1967) The origin and growth of continents. Tectonophysics 4:17–29

    Article  Google Scholar 

  • Taylor PN, Kramers JD, Moorbath S, Wilson JF, Orpen JL, Martin A (1991) Pb/Pb, Sm-Nd and Rb-Sr geochronology in the Archean craton of Zimbabwe. Chem Geol (Isot Geosci Sect) 87:175–196

    Article  Google Scholar 

  • Turekian K, Wedepohl KH (1961) Distribution of the elements in some units of the Earth’s crust. Geol Soc Am Bull 72:175–185

    Article  Google Scholar 

  • Viljoen MJ, Viljoen RP (1969a) The geology and geochemistry of the lower ultramafic unit of the Onverwacht Group and a proposed new class of igneous rocks. Geol Soc S Afr Spec Publ 2:55–86

    Google Scholar 

  • Viljoen RP, Viljoen MJ (1969b) The geological and geochemical significance of the upper formations of the Onverwacht Group. Geol Soc S Afr Spec Publ 2:113–152

    Google Scholar 

  • Viljoen MJ, Viljoen RP (1969c) Archaean volcanicity and continental evolution in the Barberton region, Transvaal. In: Clifford JN, Gass JP (eds) African magmatism and tectonics. Oliver and Boyd, Edinburgh, pp 29–47

    Google Scholar 

  • Weber W, Scoates RFJ (1978) Archaean and Proterozoic metamorphism in the northwestern Superior Province and along the Churchill-Superior boundary, Manitoba. In: Metamorphism in the Canadian Shield. Geological Survey of Canada paper 78-10. pp 5–16

    Google Scholar 

  • Windley BF (1973) Archaean anorthosites: a review of the Fiskenaesset Complex, west Greenland, as a model for interpretation. Geol Soc S Afr Spec Publ 3:319–332

    Google Scholar 

  • Windley BF, Bridgwater D (1971) The evolution of Archaean low- and high-grade terrains. Geol Soc Aust Spec Publ 3:33–46

    Google Scholar 

  • Windley BF, Smith JV (1976) Archaean high-grade complexes and modern continental margins. Nature 260:671–675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glikson, A.Y. (2014). Geochemical Trends of Archaean Magmatism. In: The Archaean: Geological and Geochemical Windows into the Early Earth. Modern Approaches in Solid Earth Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-07908-0_6

Download citation

Publish with us

Policies and ethics