Skip to main content

Uniformitarian Theories and Catastrophic Events Through Time

  • Chapter
  • First Online:
The Archaean: Geological and Geochemical Windows into the Early Earth

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 9))

  • 1196 Accesses

Abstract

Uniformitarian models for the early Earth take little or no account of repeated impacts of asteroid clusters and their effects on crust and mantle. However a large body of evidence exists for multiple impacts by bodies on the scale of tens of kilometer during ~3.47–2.48 Ga (Lowe et al. Astrobiology 3:7–48, 2003; Lowe and Byerly, Did the LHB end not with a bang but with a whimper? 41st Lunar Planet Science conference 2563pdf, 2010; Glikson and Vickers. Aust J Earth Sci 57:79–95, 2010; Glikson The asteroid impact connection of planetary evolution. Springer-Briefs, Dordrecht, 150 pp, 2013), likely accounting at least in part for mafic-ultramafic volcanism produced by mantle rebound and melting events, consistent with original suggestion by Green (Earth Planet Sci Lett 15:263–270, 1972; Green DH Petrogenesis of Archaean ultramafic magmas and implications for Archaean tectonics. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 469–489, 1981). Further, the juxtaposition of at least four impact ejecta units with the fundamental unconformity between granite-greenstone terrains and semi-continental deposits in both the Barberton Greenstone Belt and the Pilbara Craton about ~3.26–3.227 Ga constitutes a primary example for the tectonic and magmatic effects of asteroid impact clusters in the Archaean, supporting Lowe and Byerly’s (Did the LHB end not with a bang but with a whimper? 41st Lunar Planet Science conference 2563pdf, 2010) suggested extension of the late heavy bombardment (LHB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arndt N, Albarede F, Nisbet EG (1997) Mafic and ultramafic magmatism. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford, pp 231–254

    Google Scholar 

  • Arndt N, Bruzak G, Reischmann T (2001) The oldest continental and oceanic plateaus: geochemistry of basalts and komatiites of the Pilbara Craton Australia. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America (GSA) special publication 352. Geological Society of America, Boulder, pp 359–387

    Google Scholar 

  • Arth JG (1976) Behavior of trace elements during magmatic processes: a summary of theoretical models and their application. J Res U S Geol Surv 4:41–47

    Google Scholar 

  • Arth JG, Hanson GN (1975) Geochemistry and origin of the Early Precambrian crust of North-eastern Minnesota. Geochim Cosmochim Acta 39:325–362

    Article  Google Scholar 

  • Barley ME (1993) Volcanic, sedimentary, and tectono-stratigraphic environments of the ~3.46 Warrawoona Megasequence: a review. Precambrian Res 60:47–67

    Article  Google Scholar 

  • Beresford S, Tyler I, Smithies H (eds) (2013) Evolving early Earth. Precambrian Res 229:1–202

    Google Scholar 

  • Bickle MJ, Bettenay LF, Barley ME, Chapman HJ, Groves DI, Campbell IH, de Laeter JR (1983) A 3500 Ma plutonic and volcanic calc-alkaline province in the Archaean East Pilbara Block. Contrib Mineral Petrol 84:25–35

    Google Scholar 

  • Buick R, Thornett JR, McNaughton NJ, Smith JB, Barley ME, Savage M (1995) Record of emergent continental crust ~3.5 billion years ago in the Pilbara Craton of Australia. Nature 375:574–577

    Article  Google Scholar 

  • Bullard EC (1964) Continental drift. Q J Geol Soc Lond 120:1–19

    Article  Google Scholar 

  • Burke K (2011) Plate tectonics, the Wilson cycle, and Mantle plumes: geodynamics from the top. Ann Rev Earth Planet Sci 39:1–29

    Article  Google Scholar 

  • Burke K, Dewey JF, Kidd WS (1976) Dominance of horizontal movements, arcs and microcontinental collisions during the later premobile regime. In: Windley BF (ed) Early history of the Earth. Wiley, London, pp 113–130

    Google Scholar 

  • Condie KC (2001) Mantle plumes and their record in earth history. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Davies GF (1995) Punctuated tectonic evolution of the Earth. Earth Planet Sci Lett 136:363–380

    Article  Google Scholar 

  • de Wit MJ (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Res 91:181–226

    Article  Google Scholar 

  • Ernst RE, Buchan KL, Prokoph A (2004) Large Igneous Province record through time. In: Eriksson PG et al (eds) The Precambrian Earth: tempos and events in Precambrian time. Develop Precamb Geol 12. Elsevier, Amsterdam, pp 173–180

    Google Scholar 

  • French BM (1998) Traces of catastrophe – a handbook of shock metamorphic effects in terrestrial meteorite impact structures. Lunar Planet Sci Inst Contrib 954:120

    Google Scholar 

  • Glikson AY (1971) Primitive Archaean element distribution patterns: chemical evidence and tectonic significance. Earth Sci Planet Lett 12:309–320

    Article  Google Scholar 

  • Glikson AY (1972a) Petrology and geochemistry of metamorphosed Archaean ophiolites, Kalgoorlie-Coolgardie, Western Australia. Aust Bur Miner Resour Bull 125:121–189

    Google Scholar 

  • Glikson AY (1972b) Early Precambrian evidence of a primitive ocean crust and island arc nuclei of sodic granite. Bull Geol Soc Am 83:3323–3344

    Article  Google Scholar 

  • Glikson AY (1976a) Trace element geochemistry and origin of early Precambrian acid igneous series, Barberton Mountain Land, Transvaal. Geochim Cosmochim Acta 40:1261–1280

    Article  Google Scholar 

  • Glikson AY (1976b) Stratigraphy and evolution of primary and secondary greenstones: significance of data from Shields of the southern hemisphere. In: Windley BF (ed) The early history of the earth. Wiley, London, pp 257–277

    Google Scholar 

  • Glikson AY (1976c) Archaean to early Proterozoic shield elements: relevance of plate tectonics. Geol Assoc Can Spec Publ 14:489–516

    Google Scholar 

  • Glikson AY (1979a) Early Precambrian tonalite-trondhjemite sialic nuclei. Earth Sci Rev 15:1–73

    Article  Google Scholar 

  • Glikson AY (1979b) On the foundation of the Sargur Group. J Geol Soc India 20:248–255

    Google Scholar 

  • Glikson AY (1980) Uniformitarian assumptions, plate tectonics and the Precambrian Earth. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 91–104

    Google Scholar 

  • Glikson AY (2005) Geochemical and isotopic signatures of Archaean to early Proterozoic extraterrestrial impact ejecta/fallout units. Aust J Earth Sci 52:785–799

    Article  Google Scholar 

  • Glikson AY (2008) Field evidence of Eros-scale asteroids and impact-forcing of Precambrian geodynamic episodes, Kaapvaal (South Africa) and Pilbara (Western Australia) Cratons. Earth Planet Sci Lett 267:558–570

    Article  Google Scholar 

  • Glikson AY (2013) The asteroid impact connection of planetary evolution. Springer-Briefs, Dordrecht, 150 pp

    Book  Google Scholar 

  • Glikson AY, Hickman AH (1981) Geochemical stratigraphy of Archaean mafic-ultramafic volcanic successions, eastern Pilbara Block, Western Australia. In: Glover JE, Groves DI (eds) Archaean geology. Geological Society of Australia special publications 7. Geological Society of Australia, Sydney, pp 287–300

    Google Scholar 

  • Glikson AY, Sheraton JW (1972) Early Precambrian trondhjemitic suites in Western Australia and northwestern Scotland and the geochemical evolution of shields. Earth Planet Sci Lett 17:227–242

    Article  Google Scholar 

  • Glikson AY, Vickers J (2006) The 3.26–3.24 Ga Barberton asteroid impact cluster: tests of tectonic and magmatic consequences, Pilbara Craton, Western Australia. Earth Planet Sci Lett 241:11–20

    Article  Google Scholar 

  • Glikson AY, Vickers J (2010) Asteroid impact connections of crustal evolution. Aust J Earth Sci 57:79–95

    Article  Google Scholar 

  • Glikson AY, Allen C, Vickers J (2004) Multiple 3.47-Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Earth Planet Sci Lett 221:383–396

    Article  Google Scholar 

  • Green DH (1972) Archaean greenstone belts may include equivalents of lunar maria? Earth Planet Sci Lett 15:263–270

    Article  Google Scholar 

  • Green DH (1981) Petrogenesis of Archaean ultramafic magmas and implications for Archaean tectonics. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 469–489

    Google Scholar 

  • Green DH, Ringwood AE (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim Cosmochim Acta 31:767–833

    Article  Google Scholar 

  • Green TH, Ringwood AE (1977) Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol 18:105–162

    Google Scholar 

  • Hamilton WB (2003) An alternative Earth. Geol Soc Am Today 13:412

    Google Scholar 

  • Hanson GN (1975) Geochemistry and origin of the early Precambrian crust of northeastern Minnesota. Geochim Cosmochim Acta 39:325–362

    Article  Google Scholar 

  • Hickman AH (2012) Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. Island Arc 21:1–31

    Article  Google Scholar 

  • Hietanen A (1975a) Generation of potassium-poor magmas in the northern Sierra Nevada and the Sveconfennian of Finland. U S Geol Surv J Res 3:631–645

    Google Scholar 

  • Hietanen A (1975b) Generation of K-poor magma in the northern Sierra Nevada and the Svecofennian of Finland. J Res U S Geol Surv 3:631–646

    Google Scholar 

  • Holmes A (1965) Principles of physical geology. Ronald Press, New York, 1288 pp

    Google Scholar 

  • Jahn BM, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and geochronology of Archaean silicic volcanics and granitoids from the Pilbara Block, Western Australia. Geochim Cosmochim Acta 45:1633–1652

    Article  Google Scholar 

  • Jenner FJ, Bennett VC, Nutman AP (2006) 3.8 Ga arc-related basalts from Southwest Greenland. Geochim Cosmochim Acta 70:A291

    Article  Google Scholar 

  • Jenner FE, Bennett VC, Yaxley G, Friend CRL, Nebel O (2013) Eoarchean within-plate basalts from southwest Greenland. Geology 41:327–330

    Article  Google Scholar 

  • Katz MB (1972) Paired metamorphic belts of the Gondwana Precambrian and plate tectonics. Nature 239:271–273

    Article  Google Scholar 

  • Kerrich R, Polat A (2006) Archean greenstone-tonalite duality: thermochemical mantle convectionmodels or plate tectonics in the early Earth global dynamics? Tectonophysics 415:141–165

    Article  Google Scholar 

  • Kitajima K, Maruyama S, Utsonomita S, Liou JG (2001) Seafloor hydrothermal alteration at an Archaean mid-ocean ridge. J Metamorph Geol 19:581–597

    Article  Google Scholar 

  • Krapez B, Barley MB (2008) Late Archaean synorogenic basins of the Eastern Goldfields Superterrain, Yilgarn Craton, Western Australia Part III. Signatures of tectonic escape in an arc-continent collision zone. Precambrian Res 161:183–199

    Article  Google Scholar 

  • Krapez B, Eisenlohr B (1998) Tectonic settings of Archaean (3325–2775 Ma) crustal-supracrustal belts in the West Pilbara Block. Precambrian Res 88:173–205

    Article  Google Scholar 

  • Kroner A (1981) Precambrian plate tectonics. In: Kroner A (ed) Precambmrian Plate Tectonics. Elsevier, Amsterdam, pp 57–90

    Google Scholar 

  • Kroner A (1991) Tectonic evolution in the Archaean and Proterozoic. Tectonophysics 187:393–410

    Article  Google Scholar 

  • Kröner A, Hegner E, Wendt JI, Byerly GR (1996) The oldest part of the Barberton granitoid-greenstone terrain, South Africa: evidence for crust formation between 3.5 and 3.7 Ga. Precambrian Res 78:105–124

    Article  Google Scholar 

  • Lowe DR, Byerly GR (2010) Did the LHB end not with a bang but with a whimper? 41st Lunar Planet Science Conference 2563pdf

    Google Scholar 

  • Lowe DR, Byerly GR, Kyte FT, Shukolyukov A, Asaro F, Krull A (2003a) Characteristics, origin, and implications of Archaean impact-produced spherule beds, 3.47–3.22 Ga, in the Barberton Greenstone Belt, South Africa: keys to the role of large impacts on the evolution of the early Earth. Astrobiology 3:7–48

    Article  Google Scholar 

  • Lowe DR, Byerly GR, Kyte FT, Shukolyukov A, Asaro F, Krull A (2003b) Spherule beds 3.47–3.24 billion years old in the Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. Astrobiology 3:7–48

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Mitroff II (1974) The subjective side of science. Elsevier, Amsterdam, 329 pp

    Google Scholar 

  • Mohan MR et al (2014) SHRIMP zircon and titanite U-Pb ages, Lu-Hf isotope signatures and geochemical constraints for ∼2.56 Ga granitic magmatism in western Dharwar Craton, southern India: evidence for short-lived Neoarchean episodic crustal growth. Precambrian Res Online 6 January 2014

    Google Scholar 

  • Moorbath S (1977) Ages, isotopes and the evolution of the Precambrian continental crust. Chem Geol 20:151–187

    Article  Google Scholar 

  • Nelson DR (1999) Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1998. Western Australia Geological Survey Record 1999/2

    Google Scholar 

  • Nelson DR (2008) Geochronology of the Archean of Australia. Aust J Earth Sci 55:779–793, 55

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL, Pearson NJ, Jackson SE, Belousova EA, Alard O, Saeed A (2008) Taking the pulse of the Earth: linking crustal and mantle events. Aust J Earth Sci 55:983–996

    Article  Google Scholar 

  • Pearce JA, Cann JR (1971) Ophiolite origin investigated through discriminant analysis using Ti, Zr and Y. Earth Planet Sci Lett 12:339–349

    Article  Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300

    Article  Google Scholar 

  • Pearce JA, Gorman BE, Birkett TC (1977a) The relationships between major element geochemistry and tectonic environments of basic and intermediate volcanic rocks. Earth Planet Sci Lett 36:121–132

    Article  Google Scholar 

  • Pearce TH, Gorman BE, Birkett TC (1977b) The relations between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth Planet Sci Lett 36:121–132

    Article  Google Scholar 

  • Percival JA, Sanborn-Barrie M, Skulski T, Stott GM, Helmstaedt H, White DJ (2006) Tectonic evolution of the western Superior Province from NATMAP and Lithoprobe studies. Can J Earth Sci 43:1085–1117

    Article  Google Scholar 

  • Pidgeon RT, Wingate TD, Bodorkos S, Nelson DR (2010) The age distribution of detrital zircons in quartzites from the Toodyay-Lake Grace domains, Western Australia: implications for the early evolution of the Yilgarn. Am J Sci 310:1115–1135

    Article  Google Scholar 

  • Pirajno F (2000) Ore deposits and mantle plumes. Kluwer Academic Publishers, Dordrecht, 556 pp

    Book  Google Scholar 

  • Pirajno F (2007a) Mantle plumes, associated intraplate tectono-magmatic processes and ore systems. Episodes 30:6–19

    Google Scholar 

  • Pirajno F (2007b) Ancient to modern Earth: the role of mantle plumes in the making of continental crust. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology 15. Elsevier, Amsterdam, pp 1037–1064

    Google Scholar 

  • Polat A (2013) Geochemical variations in Archean volcanic rocks, southwestern Greenland: traces of diverse tectonic settings in the early Earth. Geology 41:379–380

    Article  Google Scholar 

  • Robb LJ, Anhauesser CR (1983) Chemical and petrogenetic characteristics of Archean tonalite-trondhjemite gneiss plutons in the Barberton Mountain Land. In: Anhauesser CR (ed) Contributions to the geology of the Barberton Mountain Land. Geological Society of South Africa special publication 9. Geological Society of South Africa, Johannesburg, pp 103–116

    Google Scholar 

  • Shoemaker EM, Shoemaker CS (1996) The Proterozoic impact record of Australia. Aust Geol Surv Org J Aust Geol Geophys 16:379–398

    Google Scholar 

  • Smithies RH (2000) The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Article  Google Scholar 

  • Smithies RH, Champion DC (1999) Late Archaean felsic alkaline igneous rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: a result of lower crustal delamination? J Geol Soc 156:561–576

    Article  Google Scholar 

  • Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precambrian Res 127:89–101

    Article  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ, Hickman AH (2007a) Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia. Geological Survey of Western Australia Report 104

    Google Scholar 

  • Swager CP, Goleby BR, Drummon BJ, Rattenbury MS, Williams PR (1997) Crustal structure of granite-greenstone terrains in the Eastern Goldfields, Yilgarn Craton, as revealed by seismic reflection profiling. Precambrian Res 83:43–56

    Article  Google Scholar 

  • Tarney J, Windley BF (1977) Chemistry, thermal gradients and evolution of the lower continental crust. J Geol Soc Lond 134:153–172

    Article  Google Scholar 

  • Tarney J, Dalziel IWD, DeWit MJ (1976) Marginal basin ‘Rocas Verdes’ complex from south Chile: a model for Archaean greenstone belt formation. In: Windley BF (ed) Early history of the Earth. Wiley, London, pp 131–146

    Google Scholar 

  • Terabayashi M, Masuda Y, Ozawa H (2003) Archaean ocean floor metamorphism in the North Pole area, Pilbara Craton, Western Australia. Precambrian Res 127:167–180

    Article  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007b) Secular tectonic evolution of Archaean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38

    Article  Google Scholar 

  • Walker W (1976) Eras, mobile belts and metallogeny. Geol Assoc Can Spec Publ 14:517–558

    Google Scholar 

  • Windley BF, Smith JV (1976) Archaean high-grade complexes and modern continental margins. Nature 260:671–675

    Article  Google Scholar 

  • Zegers TE, Nelson DR, Wijbrans JR, White SH (2001) SHRIMP U–Pb dating of an Archaean core complex formation and pancratonic strike-slip deformation in the East Pilbara Granite–Greenstone Terrain. Tectonics 20:883–908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glikson, A.Y. (2014). Uniformitarian Theories and Catastrophic Events Through Time. In: The Archaean: Geological and Geochemical Windows into the Early Earth. Modern Approaches in Solid Earth Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-07908-0_12

Download citation

Publish with us

Policies and ethics