Skip to main content

Combined Abiotic Stress in Legumes

  • Chapter
  • First Online:
  • 1950 Accesses

Abstract

Legume crops play a critical role as protein source and are mainly grown in regions with low-fertility soils. Hence, improving their productivity is important to harness the nutritional value of this plant species. Tolerance to environmental abiotic stress is one of the steps to reach this goal. Identification of biochemical and physiological characters which contribute to improve the yield in legumes under limiting conditions is a main objective of plant breeders for agricultural and cattle-rearing regions. While environmental abiotic stresses have been extensively studied individually, few studies have focused on combined stress, a common situation in field conditions impacts plants. It is even possible that the combination of these stress factors can alter the metabolism of the plant differently, compared to when a single type of stress is imposed. Thus, this chapter aims to provide a better understanding of the mechanisms involved in the combined stress responses in legumes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah F, Hareri F, Naaesan M, Ammar MA, ZuherKanbar O. Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat. J Agric Sci. 2011;3(3):127–33.

    Google Scholar 

  • Ahmad A, Diwan H, Abrol YP Global climate change, stress and plant productivity. In: Pareek A, Sopory KS, Bohnert HJ, Govindjee, editors. Abiotic stress adaptation in plants: physiological, molecular and genome foundation. Dordrecht: Springer; 2010. p. 503–21.

    Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P. Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res. 2008;98(1–3):541–50.

    CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.

    CAS  PubMed  Google Scholar 

  • Armstrong W. Rhizosphere oxidation in rice and other species: a mathematical model based on the oxygen flux component. Physiol Plant. 1970;23:623–30.

    CAS  Google Scholar 

  • Armstrong W. Radial oxygen loss from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol Plant. 1971;25:192–7.

    Google Scholar 

  • Armstrong W. Aeration in higher plants. Adv Bot Res. 1979;7:225–332.

    CAS  Google Scholar 

  • Ashraf M, O’Leary JW. Changes in soluble proteins in spring wheat stressed with sodium chloride. Biol Plant. 1999;42:113–7.

    CAS  Google Scholar 

  • Ayala W, Carámbula M El valor agronómico del género Lotus. Unidad de Comunicación y Transferencia de Tecnología de INIA, Montevideo, Uruguay; 2009.

    Google Scholar 

  • Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 2008;59:89–113.

    CAS  PubMed  Google Scholar 

  • Barnabás B, Jager K, Feher A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008;31(1):11–38.

    PubMed  Google Scholar 

  • Barrett-Lennard EGT. The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil. 2003;253:35–54.

    CAS  Google Scholar 

  • Begara-Morales JC, Sanchez-Calvo B, Chaki M, Valderrama R, Mata-Perez C, Lopez-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot. 2014;65(2):527–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett SJ, Barrett-Lennard EG, Colmer TD. Salinity and waterlogging as constraints to saltland pasture production: a review. Agric Ecosyst Environ. 2009;129:349–60.

    Google Scholar 

  • Berry JA, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Phys Plant Mol Biol. 1980;31:491–543.

    Google Scholar 

  • Bita CE, Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. 2013;4:273.

    PubMed Central  PubMed  Google Scholar 

  • Blokhina OB, Chirkova TV, Fagerstedt KV. Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot. 2001;52(359):1179–90.

    CAS  PubMed  Google Scholar 

  • Bohnert HJ, Sheveleva E. Plant stress adaptations-making metabolism move. Curr Opin Plant Biol. 1998;1(3):267–74.

    CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG. Adaptations to environmental stresses. Plant Cell. 1995;7(7):1099–111.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bokszczanin KL, Fragkostefanakis S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci. 2013;4:315.

    PubMed Central  PubMed  Google Scholar 

  • Bonnecarrére V, Borsani O, Díaz P, Capdevielle F, Blanco P, Monza J. Response to photoxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci. 2011;180(5):726–32.

    PubMed  Google Scholar 

  • Bray EA. Plant responses to water deficit. Trends Plant Sci. 1997;2:48–54.

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL, editors. Biochemistry and molecular biology of plants. Rockville: American society of plant physiologists; 2000. P. 1158–1203.

    Google Scholar 

  • Castillo A, Rebuffo M, Dalla Rizza M, Folle G, Santiñaque F, Borsani O, Monza J. Generation and characterization of interspecific hybrids of Lotus uliginosus x Lotus corniculatus. Crop Sci. 2012;52:1572–82.

    CAS  Google Scholar 

  • Chandra S, Buhariwalla HK, Kashiwagi J, Harikrishna S, Rupa Sridevi K, Krishnamurthy L, Serraj R, Crouch JH Identifying QTL-linked markers in markers-deficient crops. In: Fisher T, Turner N, Angust J et al., editors. Proceeding of the fourth international crop science congress. The Regional Institute Ltd., Gosford, Australia; 2004.

    Google Scholar 

  • Chen J, Wang P, Mi HL, Chen GY, Xu DQ. Reversible association of ribulose-1, 5-bisphosphate carboxylase/oxygenase activase with the thylakoid membrane depends upon the ATP level and pH in rice without heat stress. J Exp Bot. 2010;61(11):2939–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chirkova TV, Zhukova TM, Bugrova MP. Redox reactions of plant cells in response to short-term anaerobiosis. Vestnik SPBGU. 1992;3:82–6.

    Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR. Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A. 2004;101(43):15289–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colmer TD, Flowers TJ. Flooding tolerance in halophytes. New Phytol. 2008;179(4):964–74.

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, Del Rio LA, Barroso JB. Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci. 2013;4:29.

    PubMed Central  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci. 2000;57(5):779–95.

    CAS  PubMed  Google Scholar 

  • de Vitry C, Olive J, Drapier D, Recouvreur M, Wollman FA. Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol. 1989;109(3):991–1006.

    CAS  PubMed  Google Scholar 

  • Díaz P, Borsani O, Monza J Lotus-related species and their agronomic importance. In: Márquez AJ, editor. Lotus japonicus handbook. Heidelberg: Springer; 2005a. p. 25–37.

    Google Scholar 

  • Díaz P, Borsani O, Márquez M, Monza J. Osmotically induced proline accumulation in Lotus corniculatus leaves affected by light and nitrogen source. Plant Growth Regul. 2005b;46:223–32.

    Google Scholar 

  • Ellis RJ. Molecular chaperones: the plant connection. Science. 1990;250(4983):954–9.

    CAS  PubMed  Google Scholar 

  • Esfahani MN, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) Mechanisms of physiological adjustment of N2 fixation in chickpea (Cicer arientum L.) during early stages of water deficit: Single or multi-factor controls? Plant J doi:1111/tpj.12599.

    Google Scholar 

  • Feng Z, Jin-Kui G, Ying-Li Y, W en-LiangH, Li-Xin Z. Changes in pattern of antiozidant enzyma in wheat wxposed to water deficit and rewatering. Acta Physiol Plant. 2004;26:345–52.

    Google Scholar 

  • Finka A, Mattoo RU, Goloubinoff P. Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones. 2011;16(1):15–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, de Jong W, Fogelman E. Transcriptomic profiling of heat-stress response in potato periderm. J Exp Bot. 2009;60(15):4411–21.

    CAS  PubMed  Google Scholar 

  • Guo TR, Zhang GP, Zhang YH. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf B Biointerfaces. 2007;57(2):182–8.

    CAS  PubMed  Google Scholar 

  • Guy C. Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol. 1999;1(2):231–42.

    CAS  PubMed  Google Scholar 

  • Hakam P, Khanizadeh S, DeEll JR, Richer C. Assessing chilling tolerance in roses using chlorophyll fluorescence. Hortscience. 2000;35(2):184–6.

    Google Scholar 

  • Hasegawa M, Bressan R, Zhu J-K, Bhonert H. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol. 2000;51:493–9.

    Google Scholar 

  • Havaux M. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ. 1993;16:461–7.

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL. Genomic selection for crop improvement. Crop Sci. 2009;49:1–12.

    CAS  Google Scholar 

  • Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 2010;61:1041–52.

    CAS  PubMed  Google Scholar 

  • Hu ZH, Xu YN, Jiang GZ, Luang TY. Degradation and inactivation of photosystem I complexes during linera heating. Plant Sci. 2004;166:1177–83.

    CAS  Google Scholar 

  • Hutmacher RB, Krieg DR. Photosynthetic rate control in cotton: stomatal and nonstomatal factors. Plant Physiol. 1983;73(3):658–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huve K, Bichele I, Rasulov B, Niinemets U. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H(2)O(2) formation. Plant Cell Environ. 2011;34(1):113–26.

    CAS  PubMed  Google Scholar 

  • James EK, Minchin FR, Sprent JI. The physiology and nitrogen-fixing capability of aquatically and terrestrially grown Neptunia plena: the importance of nodule oxygen supply. Ann Bot 1992;69:181–7.

    Google Scholar 

  • Khalaffalla AM. Effect of sowing date, ridge direction, plant orientation and population on faba grain yield. FABIS Newslett. 1985;12:11–2.

    Google Scholar 

  • Kim K, Portis AR Jr. Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol. 2005;46(3):522–30.

    CAS  PubMed  Google Scholar 

  • Komenda J, Reisinger V, Muller BC, Dobakova M, Granvogl B, Eichacker LA. Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J Biol Chem. 2004;279(47):48620–9.

    CAS  PubMed  Google Scholar 

  • Kramer PJ. Water relations of plants. Orlando:Academic; 1983.

    Google Scholar 

  • Kyle DJ, Ohad I. The mechanism of photoinhibition in higher plants and green algae. In: Staehelin AL, Arntzen CJ, editors. Encyclopedia of plant physiology. Berlin:Springer; 1986;Vol. 19:pp. 468–75.

    Google Scholar 

  • Larkindale J, Vierling E. Core genome responses involved in acclimation to high temperature. Plant Physiol. 2008;146(2):748–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larrainzar E, Gil-Quintana E, Arrese-Igor C, Gonzalez EM, Marino D Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned? J Integr Plant Biol. 2014. doi:10.1111/jipb.12231.

    Google Scholar 

  • Lidholm J, Gustafsson P, Oquist G. Photoinhibition of photosynthesis and its recovery in a green alga Chlamydomonas reinhardtii. Plant Cell Physiol. 1987;28:1133–40.

    CAS  Google Scholar 

  • Lin KHR, Weng CC, Lo HF, Chen JT. Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Sci. 2004;167:355–65.

    CAS  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J. 2008;55(5):760–73.

    CAS  PubMed  Google Scholar 

  • Lu C, Zhang J. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot. 1999;50:1199–206.

    CAS  Google Scholar 

  • Lv WT, Lin B, Zhang M, Hua XJ. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol. 2011;156(4):1921–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol. 2002;48(5-6):667–81.

    CAS  PubMed  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA. Does proline accumulation play an active role in stress-induced growth reduction? Plant J. 2002;31(6):699–712.

    CAS  PubMed  Google Scholar 

  • Mahalingam R, Fedoroff NV Stress response, cell death and signalling: the many faces of ROS. Physiol Plant. 2003;119:56–68.

    CAS  Google Scholar 

  • Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA. Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica. 2004;137:139–45.

    CAS  Google Scholar 

  • Marino D, Frendo P, Ladera R, Zabalza A, Puppo A, Arrese-Igor C, Gonzalez EM. Nitrogen fixation control under drought stress. Localized or systemic. Plant Physiol. 2007;143:1968–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michael PI, Krishnaswamy M. The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings. Environ Exp Bot. 2011;74:171–7.

    CAS  Google Scholar 

  • Minai L, Wostrikoff K, Wollman FA, Choquet Y. Chloroplast biogenesis of photosystem II cores involves a series of assembly-controlled steps that regulate translation. Plant Cell. 2006;18(1):159–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–10.

    CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends Biochem Sci. 2012;37(3):118–25.

    CAS  PubMed  Google Scholar 

  • Morales D, Rodríguez P, Dell’Amico J, Nicolas E, Torrecillas A, Sánchez-Blanco MJ. High temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant. 2003;47:203–8.

    Google Scholar 

  • Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25(2):239–50.

    CAS  PubMed  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiol. 1995;109(3):735–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Phys. 1998;49:249–79.

    CAS  Google Scholar 

  • Ohad I, Kyle DJ, Arntzen CJ. Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol. 1984;99(2):481–5.

    CAS  PubMed  Google Scholar 

  • Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safe. 2005;60(3):324–49.

    CAS  Google Scholar 

  • Pastori GM, Foyer CH. Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol. 2002;129(2):460–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson PR, Sheaffer CC, Hall MH. Drought effects on perennial forage legume yield and quality. Agron J. 1992;84(5):774–9.

    Google Scholar 

  • Price AH, Hendry GAF. Iron-catalyzed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ. 1991;14:477–84.

    CAS  Google Scholar 

  • Pugh R, Witty JF, Mytton LR, F.R. M. The effect of waterlogging on nitrogen fixation and nodule morphology in soil grown white clover (Trifolium repens L.). J Exp Bot. 1995;46:285–90.

    CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 2002;130(3):1143–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defence pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134(4):1683–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Navarro A. Potassium transport in fungi and plants. Biochim Biophys Acta. 2000;1469(1):1–30.

    CAS  PubMed  Google Scholar 

  • Rogers ME, West DW. The effects of rootzone salinity and hypoxia on shoot and root growth in Trifolium species. Ann Bot. 1993;72:503–9.

    Google Scholar 

  • Sade B, Soylu S, Yetim E. Drought and oxidative stress. Afr J Biotechnol. 2011;10(54):11102–9.

    CAS  Google Scholar 

  • Sainz M, Diaz P, Monza J, Borsani O. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to photosystem II in combined drought-heat stressed Lotus japonicus. Physiol Plant. 2010;140(1):46–56.

    CAS  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004;120(2):179–86.

    CAS  PubMed  Google Scholar 

  • Samuelsson G, Lonneborg A, Rosenquist E, Gustafsson P, Oquist G. Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans. Plant Cell Physiol. 1985;83:992–5.

    Google Scholar 

  • Sánchez-Díaz M Adaptation of legumes to multiple stresses in Mediterranean-type environments. In: Delgado I, Lloveras J, editors. Quality in lucerne and medics for animal production. vol Options Méditerranéennes: Série A. Séminaires Méditerranéens. CHIEAM, Zaragoza, 2001. p. 145–151.

    Google Scholar 

  • Sayed OH, Earnshaw MJ, Emes MJ. Photosynthetic response of different varieties of wheat to high temperature. II. Effect of heat stress on photosynthetic electron transport. J Exp Bot. 1989;40:633–8.

    CAS  Google Scholar 

  • Schrader SM, Kleinbeck KR, Sharkey TD. Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant Cell Environ. 2007;30(6):671–8.

    CAS  PubMed  Google Scholar 

  • Schwarz C, Elles I, Kortmann J, Piotrowski M, Nickelsen J. Synthesis of the D2 protein of photosystem II in Chlamydomonas is controlled by a high molecular mass complex containing the RNA stabilization factor Nac2 and the translational activator RBP40. Plant Cell. 2007;19(11):3627–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serrano R, Mulet JM, Ríos G, Márquez JA, de Larriona IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft MRR, Montesinos C. A glimpse of the mechanism of ion homeostasis during salt stress. J Exp Bot. 1999;50:1023–36.

    CAS  Google Scholar 

  • Sharkey TD, Zhang R. High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol. 2010;52(8):712–22.

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol. 1997;115(2):327–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shyam R, Sane PV. Photoinhibition of photosynthesis and its recovery in low and high light acclimatized blue-green alga (Cyanobacterium) Spirulina platensis. Biochem Physiol Pflanz. 1989;185:211–9.

    CAS  Google Scholar 

  • Siddiqui ZS. Effects of double stress on antioxidant enzyme activity in Vigna radiata (L.) Wilczek. Acta Bot Croat. 2013;72(1):145–56.

    CAS  Google Scholar 

  • Signorelli S, Arellano JB, Melo TB, Borsani O, Monza J. Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. Plant Physiol Biochem. 2013a;64:80–3.

    CAS  PubMed  Google Scholar 

  • Signorelli S, Casaretto E, Sainz M, Diaz P, Monza J, Borsani O. Antioxidant and photosystem II responses contribute to explain the drought-heat contrasting tolerance of two forage legumes. Plant Physiol Biochem. 2013b;70C:195–203.

    Google Scholar 

  • Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci. 2013c;201–202:137–46.

    PubMed  Google Scholar 

  • Singh SK, Kakani VG, Surabhi G-K, Reddy KR () Cowpea (Vigna unguiculata [L.] Walp.) genotypes response to multiple abiotic stresses. J Photochem Photobiol B: Biol. 2010;100:135–46.

    CAS  Google Scholar 

  • Sinsawat V, Pandy J, Leipner P, Stamp P, Fracheboud Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea maize L.) grown at control or high temperature. Environ Exp Bot. 2004;52:123–9.

    CAS  Google Scholar 

  • Smillie RM, Hetherington SE. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo: chilling, freezing, ice cover, heat, and high light. Plant Physiol. 1983;72(4):1043–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15(2):89–97.

    CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 2008;13(4):178–82.

    CAS  PubMed  Google Scholar 

  • Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 2007;143(2):629–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teakle N, Flowers T, Real D, Colmer T. Lotus tenuis tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+ and Cl- from the xylem. J Exp Bot. 2007;58(8):2169–80.

    CAS  PubMed  Google Scholar 

  • Teakle NL, Bowman S, Barrett-Lennard EG, Real D, Colmer TD. Comparisons of annual pasture legumes in growth, ion regulation and root porosity demonstrate that Melilotus siculus has exceptional tolerance to combinations of salinity and waterlogging. Environ Exp Bot. 2012;77:175–84.

    CAS  Google Scholar 

  • Teskey RO, Fites JA, Samuelson LJ, Bongarten BC Stomatal and nonstomatal limitations to net photosynthesis in Pinus taeda L. under different environmental conditions. Tree Physiol. 1986;2(1_2_3):131–142.

    PubMed  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Gomez-Rodriguez MV, Chaki M, Pedrajas JR, Fernandez-Ocana A, Del Rio LA, Barroso JB. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ. 2006;29(7):1449–59.

    CAS  PubMed  Google Scholar 

  • Verboven P, Pedersen O, Herremans E, Ho QT, Nicolai BM, Colmer TD, Teakle N. Root aeration via aerenchymatous phellem: three-dimensional micro-imaging and radial O2 profiles in Melilotus siculus. New Phytol. 2011;193(2):420–31.

    PubMed  Google Scholar 

  • Verslues P, Sharp R. Proline accumulation in maize (Zea mays L) Primary roots at low water potentials. II Metabolic source of increased proline deposition in the elongation zone. Plant Physiol. 1999;119:1349–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wahid A. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res. 2007;120(2):219–28.

    PubMed  Google Scholar 

  • Wahid A, Shabbir A. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul. 2005;46:133–41.

    CAS  Google Scholar 

  • Walker BA, Pate JS, Kuo J. Nitrogen fixation by nodulated roots of Viminaria juncea (Schrad. & Wendl.) Hoffmans. (Fabaceae) when submerged in water. Aust J Plant Physiol. 1983;10:409–21.

    CAS  Google Scholar 

  • Weaich K, Briston KL, Cass A. Modeling preemergent maize shoot growth. II. High temperature stress conditions. Agron J. 1996;88:391–7.

    Google Scholar 

  • Wise R, Olson A, Schrader S, Sharkey T. Electron transport is the functional limitation of photosynthesis in field-grown pima cotton plants at high temperature. Plant Cell Environ. 2004;27:717–24.

    CAS  Google Scholar 

  • Wrzaczek M, Brosche M, Kangasjarvi J. ROS signalling loops—production, perception, regulation. Curr Opin Plant Biol. 2013;16:575–582.

    CAS  PubMed  Google Scholar 

  • Xu ZZ, Zhou GS. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta. 2006;224(5):1080–90.

    CAS  PubMed  Google Scholar 

  • Yamada M, Hidaka T, Fukamachi H. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci Hortic. 1996;37:39–48.

    Google Scholar 

  • Yordanov I, Dilova R, Petkova T, Pangelova V, Goltsev K-H. Mechanisms of the temperatures damage and acclimation of the photosynthetic apparatus. Photobiochem Photobiophys. 1986;12:147–55.

    Google Scholar 

  • Zhang R, Sharkey TD. Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res. 2009;100(1):29–43.

    CAS  PubMed  Google Scholar 

  • Zhu JK, Hasagawa PM, Bressan RA. Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci. 1997;163:253–77.

    Google Scholar 

  • Zook DM, Erwin DC, Stolzy LH. Anatomical, morphological, and physiological responses of alfalfa to flooding. Plant Soil. 1986;96:293–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Borsani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Signorelli, S., Casaretto, E., Monza, J., Borsani, O. (2015). Combined Abiotic Stress in Legumes. In: Mahalingam, R. (eds) Combined Stresses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07899-1_6

Download citation

Publish with us

Policies and ethics