Skip to main content

Combination of Elevated CO2 Levels and Soil Contaminants’ Stress in Wheat and Rice

  • Chapter
  • First Online:
Combined Stresses in Plants

Abstract

Elevated CO2 levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO2 levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO2 enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO2 on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In this 2-year study, the interactive effects of CO2 on Cu and Cd uptake in rice and wheat leaves were examined. The activities of antioxidant enzymes—catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and superoxide dismutase (SOD)—in rice and wheat leaves were used to assess the combined stress. Elevated CO2 levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO2 levels lowered the pH of the soil and led to changes in the availability of Cu and Cd in the soil. This study indicates that elevated CO2 alters the distribution of contaminant elements in soil and plants, thereby impacting food quality and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews JA, Schlesinger WH. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob Biogeochem Cycles. 2001;15:149–62.

    Article  CAS  Google Scholar 

  • Asada K. Chloroplasts-formation of active oxygen and its scavenging. Methods Enzymol. 1984;105:422–9.

    Article  CAS  Google Scholar 

  • Cakmak I, Horst WJ. Effect of aluminum on lipid-peroxidation, superoxide-dismutase, catalase, and peroxidase-activities in root-tips of soybean (Glycine-Max). Physiol Plant. 1991;83:463–8.

    Article  CAS  Google Scholar 

  • Cakmak I, Strbac D, Marschner H. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J Exp Bot. 1993;44:127–32.

    Article  CAS  Google Scholar 

  • Cheng L, Zhu J, Chen G, Zheng X, Oh NH, Rufty TW, et al. Atmospheric CO2 enrichment facilitates cation release from soil. Ecol Lett. 2010;13:284–91.

    Article  CAS  PubMed  Google Scholar 

  • Cho UH, Seo NH. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci. 2005;168:113–20.

    Article  CAS  Google Scholar 

  • Delucia EH, Callaway RM, Thomas EM, Schlesinger WH. Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Ann Bot. 1997;79:111–20.

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumbdhindsa P, Thorpe TA. Leaf senescence-correlated with increased levels of membrane-permeability and lipid-peroxidation, and decreased levels of superoxide-dismutase and catalase. J Exp Bot. 1981;32:93–101.

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 1998;135:1–9.

    Article  CAS  Google Scholar 

  • Duval BD, Dijkstra P, Natali SM, Megonigal JP, Ketterer ME, Drake BG, et al. Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2. Environ Sci Technol. 2011;45:2570–4.

    Article  CAS  PubMed  Google Scholar 

  • EFSA. Scientific panel on contaminants in the food chain. Cadmium in food. EFSA J. 2009;980:1–139.

    Google Scholar 

  • Fangmeier A, De Temmerman L, Mortensen L, Kemp K, Burke J, Mitchell R, et al. Effects on nutrients and on grain quality in spring wheat crops grown under elevated CO2 concentrations and stress conditions in the European, multiple-site experiment ‘ESPACE-wheat’. Eur J Agron. 1999;10:215–29.

    Article  Google Scholar 

  • Foyer CH, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant. 2003;119:355–64.

    Article  CAS  Google Scholar 

  • Groenenberg JE, Koopmans GF, Comans RNJ. Uncertainty analysis of the nonideal competitive adsorption-donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution. Environ Sci Technol. 2010;44:1340–6.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F. Antioxidant systems and O2-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 2001;127:817–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hill PW, Marshall C, Williams GG, Blum H, Harmens H, Jones DL, et al. The fate of photosynthetically-fixed carbon in Lolium perenne grassland as modified by elevated CO2 and sward management. New Phytol. 2007;173:766–77.

    Article  CAS  PubMed  Google Scholar 

  • Hoosbeek MR, Vos JM, Meinders MBJ, Velthorst EJ, Scarascia-Mugnozza GE. Free atmospheric CO2 enrichment (FACE) increased respiration and humification in the mineral soil of a poplar plantation. Geoderma. 2007;138:204–12.

    Article  CAS  Google Scholar 

  • Huang YZ, Hu Y, Liu YX. Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L. ). J Environ Sci China. 2009;21:647–53.

    Article  CAS  PubMed  Google Scholar 

  • IPCC. In: Climate change 2007; the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (ed. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL). Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  • Jarup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238:201–8.

    Article  PubMed  Google Scholar 

  • Kim HY, Lieffering M, Kobayashi K, Okada M, Mitchell MW, Gumpertz M. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Res. 2003;83:261–70.

    Article  Google Scholar 

  • Kinraide TB, Pedler JF, Parker DR. Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant and Soil. 2004;259:201–8.

    Article  CAS  Google Scholar 

  • Li XD, Poon CS, Liu PS. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem. 2001;16:1361–8.

    Article  CAS  Google Scholar 

  • Li KQ, Liu ZG, Lu XL, Yang JC, Zhang ZJ, Zhu QS. Uptake and distribution of cadmium in different rice cultivars (in Chinese). J Argo-Environ Sci. 2003;22:529–32.

    CAS  Google Scholar 

  • Li LZ, Zhou DM, Wang P, Jin SY, Peijnenburg WJGM, Reinecke AJ, et al. Effect of cation competition on cadmium uptake from solution by the earthworm Eisenia Fetida. Environ Toxicol Chem. 2009;28:1732–8.

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Tang SR, Deng XF, Wang RG, Song ZG. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: Implication for phytoextraction and food safety. J Hazard Mater. 2010;177:352–61.

    Article  CAS  PubMed  Google Scholar 

  • Lieffering M, Kim HY, Kobayashi K, Okada M. The impact of elevated CO2 on the elemental concentrations of field-grown rice grains. Field Crops Res. 2004;88:279–86.

    Article  Google Scholar 

  • Lin CC, Kao CH. Osmotic stress-induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Growth Regul. 2002;37:177–83.

    Article  CAS  Google Scholar 

  • Liu G, Han Y, Zhu JG, Okada M, Nakamura H, Yoshimoto M. Rice-wheat rotational FACE platform: I. System structure and control (in Chinese). Chinese J Appl Ecol. 2002;13:1253–8.

    CAS  Google Scholar 

  • Liu HJ, Yang LX, Wang YL, Huang JY, Zhu JG, Wang YX, et al. Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Res. 2008;108:93–100.

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science. 2006;312:1918–21.

    Article  CAS  PubMed  Google Scholar 

  • Luo XS, Li LZ, Zhou DM. Effect of cations on copper toxicity to wheat root: implications for the biotic ligand model. Chemosphere. 2008;73:401–6.

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec W. Signaling responses in plants to heavy metal stress. Acta Physiol Plant. 2007;29:177–87.

    Article  CAS  Google Scholar 

  • Manderscheid R, Bender J, Jager HJ, Weigel HJ. Effects of Season Long CO2 Enrichment on Cereals.II. Nutrient Concentrations and Grain Quality. Agric Ecosyst Environ. 1995;54:175–85.

    Article  CAS  Google Scholar 

  • Ministry of Health PR China M. Maximum levels of contaminants in foods. China National Standard GB2762 (China). 2005. p. 55–63.

    Google Scholar 

  • Moya TB, Ziska LH, Namuco OS, Olszyk D. Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Glob Change Biol. 1998;4:645–56.

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol. 2001;60:193–207.

    Article  Google Scholar 

  • Nahmani J, Capowiez Y, Lavelle P. Effects of metal pollution on soil macroinvertebrate burrow systems. Biol Fertil Soils. 2005;42:31–9.

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol. 1998;49:249–79.

    Article  CAS  Google Scholar 

  • Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K. Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytol. 2001;150:251–60.

    Article  Google Scholar 

  • Pan XQ, Yan BJ, Shi ZM, Dai Y. Investigation on dietary status among rural and urban residents in Jiangsu (in Chinese). Jiangsu J Prev Med. 2007;18:6–9.

    Google Scholar 

  • Polle A, Pfirrmann T, Chakrabarti S, Rennenberg H. The effects of enhanced ozone and enhanced carbon-dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea-Abies L). Plant Cell Environ. 1993;16:311–6.

    Article  CAS  Google Scholar 

  • Polle A, Eiblmeier M, Sheppard L, Murray M. Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant Cell Environ. 1997;20:1317–21.

    Article  CAS  Google Scholar 

  • Quevauviller P, Rauret G, LopezSanchez JF, Rubio R, Ure A, Muntau H. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci Tot Environ. 1997;205:223–34.

    Article  CAS  Google Scholar 

  • Schraudner M, Langebartels C, Sandermann H. Changes in the biochemical status of plant cells induced by the environmental pollutant ozone. Physiol Plant. 1997;100:274–80.

    Article  CAS  Google Scholar 

  • Schwanz P, Haberle KH, Polle A. Interactive effects of elevated CO2, ozone and drought stress on the activities of antioxidative enzymes in needles of Norway spruce trees (Picea abies, [L] Karsten) grown with luxurious N-supply. J Plant Physiol. 1996;148:351–5.

    Article  CAS  Google Scholar 

  • Skorzynska-Polit E, Pawlikowska-Pawlega B, Szczuka E, Drazkiewicz M, Krupa Z. The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses. Plant Growth Regul. 2006;48:29–39.

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal-ions. Free Radic Biolo Med. 1995;18:321–36.

    Article  CAS  Google Scholar 

  • Voigt A, Hendershot WH, Sunahara GI. Rhizotoxicity of cadmium and copper in soil extracts. Environ Toxicol Chem. 2006;25:692–701.

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhou DM, Kinraide TB, Luo XS, Li LZ, Li DD, et al. Cell membrane surface potential (ψ0) plays a dominant role in the phytotoxicity of copper and arsenate. Plant Physiol. 2008;148:2134–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu HB, Tang SR, Zhang XM, Guo JK, Song ZG, Tian SA, et al. Using elevated CO2 to increase the biomass of a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. J Hazard Mater. 2009;170:861–70.

    Article  CAS  PubMed  Google Scholar 

  • Yang LX, Wang YL, Dong GC, Gu H, Huang JY, Zhu JG, et al. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res. 2007;102:128–40.

    Article  Google Scholar 

  • Zhang YB, Duan BL, Qiao YZ, Wang KY, Korpelainen H, Li CY. Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated CO2 and planting density. For Ecol Manage. 2008;255:1937–44.

    Article  Google Scholar 

  • Ziska LH, Manalo PA, Ordonez RA. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: growth and yield response of 17 cultivars. J Exp Bot. 1996;47:1353–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for New Century Excellent Talents in University (NECT-12-0266) and the National Natural Science Foundation of China (Grant No. 20777034 and 40110817), the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KZCX3-SW−440), the China Postdoctoral Science Foundation, and the Jiangsu Planned Projects for Postdoctoral Research Funds, and the Fundamental Research Funds for the Central Universities (Grant No.1085021108). The main instruments and apparatus of the FACE system were supplied by the Japan National Institute for Agro-Environmental Sciences (NIAES) and the Japan Agricultural Research Centre for Tohoku Region (NARCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guo, H. et al. (2015). Combination of Elevated CO2 Levels and Soil Contaminants’ Stress in Wheat and Rice. In: Mahalingam, R. (eds) Combined Stresses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07899-1_4

Download citation

Publish with us

Policies and ethics