Skip to main content

The Interactive Effects of Drought and Herbivory on Ecophysiology of Trees

  • Chapter
  • First Online:

Abstract

Independently, either drought or herbivory can have severe, negative impacts on growth, physiology, and survival of trees. When these two stressors occur simultaneously, their cumulative impact on tree performance is often assumed to be synergistic, i.e., greater than expected based on simple additive effects from either stressor alone. There are thousands of published studies on the effects of drought or herbivory, yet very few have tested the assumptions of their combined impacts on tree performance. Drought affects several physiological processes that reduce carbon assimilation, while herbivory elicits a number of carbon-expensive defense mechanisms. Given that both drought events and herbivory (e.g., insect outbreaks) are expected to occur with increased frequency and intensity with climate change, research on the effects from these combined stressors on tree performance is critical for predicting future forest health and productivity. In a study that did consider both stressors, the overall combined impacts were, contrary to assumptions, antagonistic because the effect of drought stress dominated tree growth and physiology, thus outweighing the effects from herbivory. Nevertheless, synergistic effects were observed on some plant traits when the relative intensities of each stressor were considered. Consequently, the impacts from combined drought and herbivory were trait-specific, intensity-dependent, and unpredictable from the effects of single stressors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrams MD, Kubiske ME, Mostoller SA. Relating wet and dry year ecophysiology to leaf structure in contrasting temperate tree species. Ecology. 1994;75:123–33.

    Article  Google Scholar 

  • Agrawal AA. Induced responses to herbivory and increased plant performance. Science. 1998;279(5354):1201–2.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA. Current trends in the evolutionary ecology of plant defence. Funct Ecol. 2011;25(2):420–32.

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 2010;259(4):660–84.

    Article  Google Scholar 

  • Ayres MP, Lombardero MJ. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ. 2000;262(3):263–86.

    Article  CAS  PubMed  Google Scholar 

  • Ayres MP, Hicke JA, Kerns BK, McKenzie D, Littell JS, B and LE, et al. Disturbance regimes and stressors. In: Peterson DL, Vose JM, Patel-Weynand T, editors. Climate change and United States forests. New York: Springer; 2014. pp. 55–92.

    Chapter  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol. 2002;8(1):1–16.

    Article  Google Scholar 

  • Bansal S, Hallsby G, Löfvenius MO, Nilsson M-C. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Tree Physiol. 2013;33(5):451–63.

    Article  CAS  PubMed  Google Scholar 

  • Bansal S, Harrington CA, Gould PJ, St. Clair JB. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Global Change Biol. 2014; doi: 10.1111/gcb.12719

    Google Scholar 

  • Bauerfeind SS, Fischer K. Testing the plant stress hypothesis: stressed plants offer better food to an insect herbivore. Entomol Exp Appl. 2013;149(2):148–58.

    Google Scholar 

  • Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, et al. Climate change and bark beetles of the Western United States and Canada: direct and indirect effects. Bioscience. 2010;60(8):602–13.

    Article  Google Scholar 

  • Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling ­cross-tolerance. Trends Plant Sci. 2000;5(6):241–6.

    Article  CAS  PubMed  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Sci For. 2006;63(6):625–44.

    Article  Google Scholar 

  • Burghardt M, Riederer M. Ecophysiological relevance of cuticular transpiration of ­deciduous and evergreen plants in relation to stomatal closure and leaf water potential. J Exp Bot. 2003;54(389):1941–9.

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS, Bloom AJ, Field CB, Waring RH. Plant responses to multiple environmental factors. Bioscience. 1987;37(1):49–57.

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol. 2003;30(3):239–64.

    Article  CAS  Google Scholar 

  • Cochard H. Vulnerability of several conifers to air embolism. Tree Physiol. 1992;11(1):73–83.

    Article  PubMed  Google Scholar 

  • Croteau R, Johnson MA. Biosynthesis of terpenoid wood extractives. In: Higuchi T, editor. ­Biosynthesis and biodegradation of wood components. London: Academic; 1985. pp. 379–439.

    Chapter  Google Scholar 

  • Dungan RJ, Turnbull MH, Kelly D. The carbon costs for host trees of a phloem-feeding herbivore. J Ecol. 2007;95(4):603–13.

    Article  CAS  Google Scholar 

  • Eigenbrode SD, Espelie KE. Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol. 1995;40(1):171–94.

    Article  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol. 2006;9(4):436–42.

    Article  PubMed  Google Scholar 

  • Grace J. Cuticular water loss unlikely to explain tree-line in Scotland. Oecologia. 1990;84(1):64–8.

    Article  Google Scholar 

  • Grinnan R, Carter T, Johnson MT. The effects of drought and herbivory on plant-herbivore interactions across 16 soybean genotypes in a field experiment. Ecol Entomol. 2013;38(3):290–302.

    Article  Google Scholar 

  • Gutbrodt B, Mody K, Dorn S. Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos. 2011;120(11):1732–40.

    Article  CAS  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. Plant structural traits and their role in ­anti-herbivore defence. Perspect Plant Ecol Evol Syst. 2007;8(4):157–78.

    Article  Google Scholar 

  • Hart SJ, Veblen TT, Eisenhart KS, Jarvis D, Kulakowski D. Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology. 2014;95:930–9.

    Article  PubMed  Google Scholar 

  • Hatcher PE. Three-way interactions between plant pathogenic fungi, herbivorous insects and their host plants. Biol Rev. 1995;70(4):639–94.

    Article  Google Scholar 

  • Haynes KJ, Allstadt AJ, Klimetzek D. Forest defoliator outbreaks under climate change: ­effects on the frequency and severity of outbreaks of five pine insect pests. Glob Change Biol. 2014;20:2004–18.

    Article  Google Scholar 

  • Huberty AF, Denno RF. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology. 2004;85(5):1383–98.

    Article  Google Scholar 

  • Jamieson MA, Trowbridge AM, Raffa KF, Lindroth RL. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 2012;160(4):1719–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karban R, Myers JH. Induced plant responses to herbivory. Annu Rev Ecol Syst. 1989;20(1):331–48.

    Article  Google Scholar 

  • Kempel A, Schädler M, Chrobock T, Fischer M, van Kleunen M. Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc Natl Acad Sci U S A. 2011;108(14):5685–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kerstiens G. Cuticular water permeability and its physiological significance. J Exp Bot. 1996;47(12):1813–32.

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT. Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol. 2002;53(1):299–328.

    Article  CAS  PubMed  Google Scholar 

  • Koricheva J, Larsson S, Haukioja E. Insect performance on experimentally stressed woody plants: a meta-analysis. Annu Rev Entomol. 1998;43(1):195–216.

    Article  CAS  PubMed  Google Scholar 

  • Langenheim JH. Plant resins. Am Sci. 1990;78:16–24.

    Google Scholar 

  • Larcher W. Physiological plant ecology: ecophysiology and stress physiology of functional groups. 4th ed. New York: Springer; 2003. p. 513.

    Book  Google Scholar 

  • Larsson S. Stressful times for the plant stress: insect performance hypothesis. Oikos. 1989;56:277–83.

    Article  Google Scholar 

  • Leshem Y, Kuiper P. Is there a GAS (general adaptation syndrome) response to various types of environmental stress? Biol Plant. 1996;38(1):1–18.

    Article  Google Scholar 

  • Lombardero MJ, Ayres MP. Factors influencing bark beetle outbreaks after forest fires on the ­Iberian Peninsula. Environ Entomol. 2011;40(5):1007–18.

    Article  PubMed  Google Scholar 

  • Lorio PL, Sommers RA. Evidence of competition for photosynthates between growth processes and oleoresin synthesis in Pinus taeda L. Tree Physiol. 1986;2:301–6.

    Article  CAS  Google Scholar 

  • Maherali H, Pockman WT, Jackson RB. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology. 2004;85(8):2184–99.

    Article  Google Scholar 

  • Mattson WJ, Haack RA. The role of drought in outbreaks of plant-eating insects. Bioscience. 1987;37(2):110–8.

    Article  Google Scholar 

  • McDowell N. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation ­mortality. Plant Physiol. 2011;155(3):1051–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 2008;178(4):719–39.

    Article  PubMed  Google Scholar 

  • Meier C, Newton R, Puryear J, Sen S. Physiological responses of Loblolly pine (Pinus ­taeda) seedlings to drought stress: osmotic adjustment and tissue elasticity. J Plant Physiol. 1992;140(6):754–60.

    Article  CAS  Google Scholar 

  • Mitchell PJ, Battaglia M, Pinkard EA. Counting the costs of multiple stressors: is the whole greater than the sum of the parts? Tree Physiol. 2013;33(5):447–50.

    Article  PubMed  Google Scholar 

  • Myers JH, Bazely D. Thorns, spines, prickles, and hairs: are they stimulated by herbivory and do they deter herbivores. In: Tallamy DW, Raupp MJ, editors. Phytochemical induction by ­herbivores. New York: Wiley; 1991. pp. 325–44.

    Google Scholar 

  • Neely D. Healing of wounds on trees. J Am Soc Hortic Sci. 1970;95(5):536–40.

    Google Scholar 

  • Niinemets U. Responses of forest trees to single and multiple environmental stresses from ­seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manage. 2010;260(10):1623–39.

    Article  Google Scholar 

  • Ohgushi T. Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu Rev Ecol Evol Syst. 2005;36:81–105.

    Article  Google Scholar 

  • Oren R, Schulze E-D, Matyssek R, Zimmermann R. Estimating photosynthetic rate and annual ­carbon gain in conifers from specific leaf weight and leaf biomass. Oecologia. 1986;70(2):187–93.

    Article  Google Scholar 

  • Orians C, Thorn A, Gómez S. Herbivore-induced resource sequestration in plants: why bother? Oecologia. 2011;167(1):1–9.

    Article  PubMed  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP. Response of plants to water stress. Front Plant Sci. 2014;5:1–8.

    Article  Google Scholar 

  • Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37–42.

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Villar R. The fate of acquired carbon in plants: chemical composition and construction costs. In: Bazzaz FA, Jones B, editors. Plant resource allocation. New York: Academic; 1997. pp. 39–72.

    Chapter  Google Scholar 

  • Price PW. The plant vigor hypothesis and herbivore attack. Oikos. 1991;62:244–51.

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: Global convergence in plant ­functioning. Proc Natl Acad Sci U S A. 1997;94(25):13730–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, et al. Physiological responses of forest trees to heat and drought. Plant Biol. 2006;8(5):556–71.

    Article  CAS  PubMed  Google Scholar 

  • Rouault G, Candau J-N, Lieutier F, Nageleisen L-M, Martin J-C, Warzée N. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci. 2006;63(6):613–24.

    Article  Google Scholar 

  • Ryan MG. Tree responses to drought. Tree Physiol. 2011;31(3):237–9.

    Article  PubMed  Google Scholar 

  • Sala A, Piper F, Hoch G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 2010;186(2):274–81.

    Article  PubMed  Google Scholar 

  • Scherber C, Gladbach DJ, Stevnbak K, Karsten RJ, Schmidt IK, Michelsen A, et al. Multi-factor climate change effects on insect herbivore performance. Ecol Evol. 2013;3(6):1449–60.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schreiber L, Riederer M. Ecophysiology of cuticular transpiration: comparative ­investigation of cuticular water permeability of plant species from different habitats. Oecologia. 1996;107(4):426–32.

    Article  Google Scholar 

  • Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 2014;37(1):153–61.

    Article  CAS  PubMed  Google Scholar 

  • Strauss SY, Agrawal AA. The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol. 1999;14(5):179–85.

    Article  PubMed  Google Scholar 

  • Taiz L, Zeiger E. Plant physiology. 3rd ed. Sunderland: Sinauer Associates Inc.; 2002. p. i-690.

    Google Scholar 

  • Trapp S, Croteau R. Defensive resin biosynthesis in conifers. Annu Rev Plant Biol. 2001;52(1):689–724.

    Article  CAS  Google Scholar 

  • Trowbridge AM, Daly RW, Helmig D, Stoy PC, Monson RK. Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests. Ecology. 2014;95(6):1591–603.

    Article  PubMed  Google Scholar 

  • Turtola S, Manninen A-M, Rikala R, Kainulainen P. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. J Chem Ecol. 2003;29(9):1981–95.

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants. New Phytol. 1991;119(3):345–60.

    Article  Google Scholar 

  • Vierling E, Kimpel JA. Plant responses to environmental stress. Curr Opin Biotechnol. 1992;3(2):164–70.

    Article  CAS  PubMed  Google Scholar 

  • Vinebrooke RD, Cottingham KL, Norberg J, Scheffer M, Dodson SI, Maberly SC, et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos. 2004;104(3):451–7.

    Article  Google Scholar 

  • White T. A hypothesis to explain outbreaks of looper caterpillars, with special reference to ­populations of Selidosema suavis in a plantation of Pinus radiata in New Zealand. Oecologia. 1974;16(4):279–301.

    Article  Google Scholar 

  • White T. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia. 1984;63(1):90–105.

    Article  Google Scholar 

  • Williams JW, Jackson ST. Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ. 2007;5(9):475–82.

    Article  Google Scholar 

  • Wu J, Baldwin IT. Herbivory-induced signalling in plants: perception and action. Plant Cell ­Environ. 2009;32(9):1161–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheel Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bansal, S. (2015). The Interactive Effects of Drought and Herbivory on Ecophysiology of Trees. In: Mahalingam, R. (eds) Combined Stresses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07899-1_12

Download citation

Publish with us

Policies and ethics