Skip to main content

Combined Stresses in Forests

  • Chapter
  • First Online:
Book cover Combined Stresses in Plants

Abstract

Tree species are exposed to single and combined forms of stress capable of inducing severe changes in plant functioning and survival. Climate change and other human disturbance continue to introduce novel combinations of stressors in forest ecosystems that make predicting their impact exceedingly difficult. In this chapter, we examine the causes and consequences of combined stresses in forest ecosystems. We discuss the significance of a range of abiotic and biotic factors responsible for various impacts on forest ecosystems, including long-term decline and episodic forest collapse. A generalized framework is presented that helps elucidate the contributions of primary, secondary, conditioning, and anthropogenic factors in determining levels of physiological stress in trees. The intensity, frequency, and duration of the constitutive stressors can determine the effect of other stress factors, thereby mediating the importance of singular and multiple factors in defining physiological distress and recovery. The importance of understanding the mechanistic basis for observed stress responses is discussed in light of the challenges associated with predicting impacts from multiple stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams HD, Guardiola-claramonte M, Barron-gafford GA, Camilo J. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci U S A. 2009;106(17):7063–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 2007;30(3):258–70.

    Article  CAS  PubMed  Google Scholar 

  • Akashi Y, Mueller-Dombois D. A landscape perspective of the Hawaiian rain forest dieback. J Veg Sci. 1995;6(4):449–64.

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 2010;259(4):660–84. doi:10.1016/j.foreco.2009.09.001.

    Article  Google Scholar 

  • Ayres MP, Lombardero MaJ. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ. 2000;262(3):263–86. doi:10.1016/S0048-9697(00)00528-3.

    Article  CAS  PubMed  Google Scholar 

  • Bansal S, Hallsby G, Löfvenius MO, Nilsson M-C. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Tree Physiol. 2013;33(5):451–63.

    Article  CAS  PubMed  Google Scholar 

  • Barrett-Lennard EG, Shabala SN. The waterlogging/salinity interaction in higher plants revisited-focusing on the hypoxia-induced disturbance to K + homeostasis. Funct Plant Biol. 2013;40(9):872–82.

    CAS  Google Scholar 

  • Boisvenue C, Running SW. Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Glob Change Biol. 2006;12:862–82.

    Article  Google Scholar 

  • Bonan GB. Connecting mathematical ecosystems, real-world ecosystems, and climate science. New Phytol. 2014;202(3):731–3.

    Article  PubMed  Google Scholar 

  • Breda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci. 2006;63:625–44.

    Article  Google Scholar 

  • Brodribb TJ, Cochard H. Hydraulic failure defines the recovery and point of death. Plant Physiol. 2009;149:575–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 2010;188(2):533–42.

    Article  PubMed  Google Scholar 

  • Cable JM, Ogle K, Tyler AP, Pavao-Zuckerman Ma, Huxman TE. Woody plant encroachment impacts on soil carbon and microbial processes: results from a hierarchical Bayesian analysis of soil incubation data. Plant Soil. 2009;320:153–67.

    Article  CAS  Google Scholar 

  • Clements RJ, Ludlow MM. Frost Avoidance and Frost resistance in Centrosema virginianum. J Appl Ecol. 1977;14(2):551–66.

    Article  Google Scholar 

  • Davidson NJ, Battaglia M, Close DC. Photosynthetic responses to overnight frost in Eucalyptus nitens and E. globulus. Trees. 2004;18(3):245–52.

    Article  CAS  Google Scholar 

  • Dreesen FE, De Boeck HJ, Janssens IA, Nijs I. Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages. Biogeosciences. 2014;11(1):109–21.

    Article  Google Scholar 

  • Duan H, Amthor JS, Duursma RA, O’Grady AP, Choat B, Tissue DT. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Tree Physiol. 2013;33(8):779–92.

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Duursma RA, Huang G, Smith RA, Choat B, O’Grady AP, et al. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ. 2014;37:1598–613.

    Article  CAS  PubMed  Google Scholar 

  • Engelbrecht B, Kursar T. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia. 2003;136(3):383–93.

    Article  PubMed  Google Scholar 

  • Fensham RJ, Fairfax RJ. Drought-related tree death of savanna eucalypts: species susceptibility, soil conditions and root architecture. J Veg Sci. 2007;18(1):71–80.

    Article  Google Scholar 

  • Frank JM, Massman WJ, Ewers BE, Huckaby LS, Negrón JF. Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles. J Geophys Res Biogeosci. 2014;119:1195–1215. doi:10.1002/2013JG002597.

    Article  CAS  Google Scholar 

  • Galiano L, Martínez-Vilalta J, Lloret F. Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 year after a drought episode. New Phytol. 2011;190(3):750–9.

    Article  CAS  PubMed  Google Scholar 

  • Gallé A, Feller U. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiol Plant. 2007;131(3):412–21.

    Article  PubMed  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE. Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol. 2006;44(1):489–509.

    Article  CAS  PubMed  Google Scholar 

  • Gieger T, Thomas FM. Effects of defoliation and drought stress on biomass partitioning and water relations of Quercus robur and Quercus petraea. Basic Appl Ecol. 2002;3(2):171–81.

    Article  Google Scholar 

  • Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111(982):1169–94.

    Article  Google Scholar 

  • Hartmann H, Ziegler W, Kolle O, Trumbore S. Thirst beats hunger-declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol. 2013;200:340–9.

    Article  CAS  PubMed  Google Scholar 

  • Hölttä T, Mencuccini M, Nikinmaa E. Linking phloem function to structure: Analysis with a coupled xylem-phloem transport model. J Theor Biol. 2009;259(2):325–37.

    Article  PubMed  Google Scholar 

  • Hsiao TC, Acevedo E, Fereres E, Henderson DW. Water stress, growth, and osmotic adjustment. Philos Trans R Soc Lond B Biol Sci. 1976;273(927):479–500.

    Article  Google Scholar 

  • Jacquet J-S, Bosc A, O’Grady AP, Jactel. H. Pine growth response to processionary moth defoliation across a 40 year age chronosequence. For Ecol Manage. 2013;293:29–38.

    Article  Google Scholar 

  • Jacquet JS, Bosc A, O’Grady A, Jactel H. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates. Tree Physiol. 2014;34(4): 1–10.

    Google Scholar 

  • Jactel H, Petit J, Desprez-Loustau M-L, Delzon S, Piou D, Battisti A, et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Change Biol. 2012;18(1):267–76.

    Article  Google Scholar 

  • Jönsson AM, Schroeder LM, Lagergren F, Anderbrant O, Smith B. Guess the impact of Ips typographus—an ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agric For Meteorol. 2012;166-167(0):188–200.

    Article  Google Scholar 

  • Jurskis V. Eucalypt decline in Australia, and a general concept of tree decline and dieback. For Ecol Manage. 2005;215(1-3):1–20. doi:10.1016/j.foreco.2005.04.026.

    Article  Google Scholar 

  • Koepke D, Kolb T, Adams H. Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone. Oecologia. 2010;163(4):1079–90.

    Article  PubMed  Google Scholar 

  • Lambers H, Chapin FS, Pons TL. Assumptions and approaches. Plant physiological ecology. New York: Springer; 2008. p. 154–204.

    Book  Google Scholar 

  • Landsberg J. Water stress, leaf nutrients and defoliation: a model of dieback in rural eucalypts. Aust J Ecol. 1983;8:27–41.

    Article  CAS  Google Scholar 

  • Larsen JB. Testing winter desiccation resistance for species and provenance selection at timberlines. In: Alden J, editor. Forest development in cold climates. New York: Plenum Press; 1993. p. 59–64.

    Chapter  Google Scholar 

  • Li Z, Apps MJ, Kurz WA, Banfield E. Temporal changes of forest net primary production and net ecosystem production in west central Canada associated with natural and anthropogenic disturbances. Can J For Res. 2003;33(12):2340–51. doi:10.1139/x03-168.

    Article  Google Scholar 

  • Liu C-C, Liu Y-G, Guo K, Zheng Y-R, Li G-Q, Yu L-F, et al. Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. Physiol Plant. 2010;139(1):39–54.

    Article  CAS  PubMed  Google Scholar 

  • Lloret F, Siscart D, Dalmases C. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob Change Biol. 2004;10(12):2092–9.

    Article  Google Scholar 

  • Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F. Extreme climatic events and vegetation: the role of stabilizing processes. Glob Change Biol. 2012;18(3):797–805.

    Article  Google Scholar 

  • Loehle C, LeBlanc D. Model-based assessments of climate change effects on forests: a critical review. Ecol Modell. 1996;90(1):1–31. doi:10.1016/0304-3800(96)83709-4.

    Article  CAS  Google Scholar 

  • Long SP, East TM, Baker NR. Chilling damage to photosynthesis in Young Zea mays: I. Effects of light and temperature variation on photosynthetic CO2 assimilation. J Exp Bot. 1983;34(2):177–88.

    Article  Google Scholar 

  • Lyon B. Southern Africa summer drought and heat waves: observations and coupled model behavior. J Climate. 2011;22(22):6033–46. doi:10.1175/2009JCLI3101.1.

    Article  Google Scholar 

  • Manion PD. Decline diseases of complex biotic and abiotic origin. Tree disease concepts. Englewood Cliffs: Prentice-Hall; 1981. p. 324–39.

    Google Scholar 

  • Matusick G, Ruthrof K, Brouwers N, Dell B, Hardy GJ. Sudden forest canopy collapse corresponding with extreme drought and heat in a Mediterranean-type eucalypt forest in southwestern Australia. Eur J Forest Res. 2013;132(3):497–510.

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 2008;178(4):719–39.

    Article  PubMed  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol. 2011;26(10):523–32.

    Article  PubMed  Google Scholar 

  • McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 2013;200(2):304–21.

    Article  CAS  PubMed  Google Scholar 

  • Metcalf CJE, McMahon SM, Clark JS. Overcoming data sparseness and parametric constraints in modeling of tree mortality: a new nonparametric Bayesian model. Can J For Res. 2009;39(9):1677–87. doi:10.1139/X09-083.

    Article  Google Scholar 

  • Mitchell PJ, Veneklaas EJ, Lambers H, Burgess SSO. Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia. Oecologia. 2008;158:385–97.

    Article  PubMed  Google Scholar 

  • Mitchell PJ, Battaglia M, Pinkard EA. Counting the costs of multiple stressors: is the whole greater than the sum of the parts? Tree Physiol. 2013;33(5):447–50.

    Article  PubMed  Google Scholar 

  • Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol. 2013;197(3):862–72.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PJ, O’Grady AP, Hayes KR, Pinkard EA. Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types. Ecol Evol. 2014;4(7):1088–101.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mitchell PJ, O’Grady AP, Tissue DT, Worledge D, Pinkard EA. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiol. 2014;34:443–58.

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Dombois D. Perspectives for an etiology of stand-level dieback. Annu Rev Ecol Syst. 1986;17:221–43. (ArticleType: research-article/ Full publication date: 1986/ Copyright © 1986 Annual Reviews).

    Google Scholar 

  • Mueller-Dombois D. Natural dieback in forests. Bioscience. 1987;37(8):575–83.

    Article  Google Scholar 

  • Mueller-Dombois D. Towards a unifying theory for stand-level dieback. Geojournal. 1988;17(2):249–51.

    Article  Google Scholar 

  • Munns R, Termaat A. Whole-plant responses to salinity. Funct Plant Biol. 1986;13(1):143–60.

    Google Scholar 

  • Niinemets Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For Ecol Manage. 2010;260(10):1623–39.

    Article  Google Scholar 

  • Ogle K, Barber J. Bayesian data-model integration in plant physiological and ecosystem ecology. In: Lüttge U, Beyschlag W, Murata J, editors. Progress in Botany. Springer Berlin Heidelberg; 2008. p. 281–311.

    Google Scholar 

  • Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, et al. Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Change Biol. 2013;19(8):2303–38.

    Article  Google Scholar 

  • Pinkard EA, Eyles A, O’Grady AP. Are gas exchange responses to resource limitation and defoliation linked to source: sink relationships? Plant Cell Environ. 2011;34(10):1652–65.

    Article  CAS  PubMed  Google Scholar 

  • Pinkard EA, Battaglia M, Roxburgh S, O’Grady AP. Estimating forest net primary production under changing climate: adding pests into the equation. Tree Physiol. 2011;31(7):686–99.

    Article  CAS  PubMed  Google Scholar 

  • Pook EW, Forrester R. Factors influencing dieback and drought-affected dry sclerophyll forest tree species. Aust For Res. 1984;14:201–17.

    Google Scholar 

  • Poyatos R, Aguadé D, Galiano L, Mencuccini M, Martínez-Vilalta J. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol. 2013;200:388–401.

    Article  CAS  PubMed  Google Scholar 

  • Rammig A, Jupp T, Thonicke K, Tietjen B, Heinke J, Ostberg S, et al. Estimating the risk of Amazonian forest dieback. New Phytol. 2010;187(3):694–706.

    Article  CAS  PubMed  Google Scholar 

  • Repo T, Kalliokoski T, Domisch T, Lehto T, Mannerkoski H, Sutinen S, et al. Effects of timing of soil frost thawing on Scots pine. Tree Physiol. 2005;25(8):1053–62.

    Article  PubMed  Google Scholar 

  • Repo T, Lehto T, Finér L. Delayed soil thawing affects root and shoot functioning and growth in Scots pine. Tree Physiol. 2008;28(10):1583–91.

    Article  PubMed  Google Scholar 

  • Rivas-Ubach A, Gargallo-Garriga A, Sardans J, Oravec M, Mateu-Castell L, Pérez-Trujillo M, et al. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 2014;202(3):874–85.

    Article  CAS  PubMed  Google Scholar 

  • Rouault G, Candau J-N, Lieutier F, Nageleisen L-M, Martin J-C, Warzée N. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci. 2006;63(6):613–24.

    Article  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: feast or famine? Tree Physiol. 2012;32(6):764–75.

    Article  CAS  PubMed  Google Scholar 

  • Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32.

    Article  Google Scholar 

  • Shan Y. Phenological disorder induced by atmospheric nitrogen deposition: original causes of pine forest decline over Japan. Part II. Relationship among earlier phenological development, extreme of minimum air temperature, and forest decline of pines over the Japan. Water Air Soil Pollut. 2000;117(1-4):205–15.

    Article  CAS  Google Scholar 

  • Steinbauer MJ. Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (Eucalyptus globulus ssp. globulus): implications for insect defoliation. Aust For. 2001;64(1):32–7. doi:10.1080/00049158.2001.10676158.

    Article  Google Scholar 

  • Steinberg CEW, Stürzenbaum SR, Menzel R. Genes and environment-striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ. 2008;400(1-3):142–61.

    Article  CAS  PubMed  Google Scholar 

  • Stone C. Bell-miner-associated dieback at the tree crown scale: a multi-trophic process. Aust For. 2005;68(4):237–41. doi:10.1080/00049158.2005.10674971.

    Article  Google Scholar 

  • Trought M, Drew M. The development of waterlogging damage in young wheat plants in anaerobic solution cultures. J Exp Bot. 1980;31:1575–85.

    Article  Google Scholar 

  • Tyree MT, Sperry JS. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiol. 1988;88:574–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Physiol Plant Mol Biol. 1989;40(1):19–36.

    Article  Google Scholar 

  • van der Moezel PG, Watson LE, Bell DT. Gas exchange responses of two Eucalyptus species to salinity and waterlogging. Tree Physiol. 1989;5(2):251–7.

    Article  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Fulé PZ, et al. Widespread increase of tree mortality rates in the western United States. Science. 2009;323(5913):521–4.

    Article  PubMed  Google Scholar 

  • Vautard R, Yiou P, D’Andrea F, de Noblet N, Viovy N, Cassou C, et al. Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys Res Lett. 2007;34(7):1–5.

    Article  Google Scholar 

  • Wardell-Johnson G, Stone C, Recher H, Lynch AJJ. A review of eucalypt dieback associated with bell miner habitat in south-eastern Australia. Aust For. 2005;68(4):231–6. doi:10.1080/00049158.2005.10674970.

    Article  Google Scholar 

  • Wargo P. Consequences of environmental stress on oak: predisposition to pathogens. Ann For Sci. 1996;53(2-3):359–68.

    Article  Google Scholar 

  • Warren JM, Norby RJ, Wullschleger SD. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 2011;31(2):117–30.

    Article  PubMed  Google Scholar 

  • White TCR. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia. 1984;63(1):90–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitchell, P., Wardlaw, T., Pinkard, L. (2015). Combined Stresses in Forests. In: Mahalingam, R. (eds) Combined Stresses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07899-1_11

Download citation

Publish with us

Policies and ethics