Skip to main content

Performance Evaluation of Integrated Energy Systems

  • Chapter
  • First Online:
Progress in Sustainable Energy Technologies: Generating Renewable Energy

Abstract

The current literature on integrated energy systems for various applications is discussed and how energy systems are integrated for multigeneration purposes is explained. Three integrated energy systems, including renewable and non-renewable ones, are considered to enhance the analyses. A micro-gas turbine integrated system is selected as the non-renewable system while biomass and ocean thermal energy conversion based energy systems are considered as the renewable options. Exergy analysis is conducted to determine the irreversibilities in each component and the system performance. Furthermore, economic and environmental impact assessments of the systems are conducted, and the results are presented for each integrated system. The results show that the integrated energy systems have higher exergy efficiency compared to single generation unit and that the integration results in reduction of greenhouse gases emission. The performances of the three systems are compared, and the results show that the choice and benefits of integrated systems strongly depends on the priorities of the designers and engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev 4:157–175

    Article  Google Scholar 

  2. Ozgur Colpan C, Dincer I, Hamdullahpur F (2009) The reduction of greenhouse gas emissions using various thermal systems in a landfill site. Int J Global Warming 1:89–105

    Article  Google Scholar 

  3. Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores Science 310:1317–1321

    Article  Google Scholar 

  4. Ahmadi P, Dincer I (2010) Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA). Energy 35:5161–5172

    Article  Google Scholar 

  5. Ahmadi P (2013) Modeling, analyses and optimization of integrated energy systems for multigeneration purposes Ph.D Disertation. University of Ontario Institute of Technology, Canada

    Google Scholar 

  6. Ahmadi P, Rosen MA, Dincer I (2011) Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system. Int J Greenh Gas Control 5:1540–1549

    Article  Google Scholar 

  7. Dincer I, Zamfirescu C (2012) Renewable‐energy‐based multigeneration systems. Int J Energy Res

    Google Scholar 

  8. Ahmadi P, Rosen MA, Dincer I (2012) Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm. Energy 46:21–31

    Article  Google Scholar 

  9. Khaliq A, Kumar R, Dincer I (2009) Performance analysis of an industrial waste heat‐based trigeneration system. Int J Energy Res 33:737–744

    Article  Google Scholar 

  10. Ratlamwala T, Dincer I, Gadalla M (2012) Energy and exergy analyses of an integrated solar‐based desalination quadruple effect absorption system for freshwater and cooling production. Int J Energy Res

    Google Scholar 

  11. Horlock JH (2003) Advanced gas turbine cycles. Pergamon Press

    Google Scholar 

  12. Haseli Y, Dincer I, Naterer G (2008) Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell. Int J Hydrog Energy 33:5811–5822

    Article  Google Scholar 

  13. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolut Comput 2:221–248

    Article  Google Scholar 

  14. Huangfu Y, Wu J, Wang R, Xia Z (2007) Experimental investigation of adsorption chiller for micro-scale BCHP system application. Energy Build 39:120–127

    Article  Google Scholar 

  15. Mago PJ, Hueffed A, Chamra LM (2010) Analysis and optimization of the use of CHP–ORC systems for small commercial buildings. Energy Build 42:1491–1498

    Article  Google Scholar 

  16. Mago PJ, Smith AD (2012) Evaluation of the potential emissions reductions from the use of CHP systems in different commercial buildings. Build Environ 53:74–82

    Article  Google Scholar 

  17. Mago PJ, Hueffed AK (2010) Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies. Energy Build 42:1628–1636

    Article  Google Scholar 

  18. Bianchi M, De Pascale A, Melino F (2013) Performance analysis of an integrated CHP system with thermal and electric energy storage for residential application. Appl Energy

    Google Scholar 

  19. Havelský V (1999) Energetic efficiency of cogeneration systems for combined heat, cold and power production. Int J Refrig 22:479–485

    Article  Google Scholar 

  20. Mıguez J, Murillo S, Porteiro J, Lopez L (2004) Feasibility of a new domestic CHP trigeneration with heat pump: I. Design and development. Appl Therm Eng 24:1409–1419

    Article  Google Scholar 

  21. Porteiro J, Mıguez J, Murillo S, Lopez L (2004) Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Appl Therm Eng 24:1421–1429

    Article  Google Scholar 

  22. Cihan A, Hacıhafızoglu O, Kahveci K (2006) Energy–exergy analysis and modernization suggestions for a combined‐cycle power plant. Int J Energy Res 30:115–126

    Article  Google Scholar 

  23. Barelli L, Bidini G, Gallorini F, Ottaviano A (2011) An energetic–exergetic analysis of a residential CHP system based on PEM fuel cell. Appl Energy 88:4334–4342

    Article  Google Scholar 

  24. Bingöl E, Kılkış B, Eralp C (2011) Exergy based performance analysis of high efficiency poly-generation systems for sustainable building applications. Energy Build 43:3074–3081

    Article  Google Scholar 

  25. El-Emam RS, Dincer I (2011) Energy and exergy analyses of a combined molten carbonate fuel cell–Gas turbine system. Int J Hydrog Energy 36:8927–8935

    Article  Google Scholar 

  26. Akkaya AV, Sahin B, Huseyin Erdem H (2008) An analysis of SOFC/GT CHP system based on exergetic performance criteria. Int J Hydrog Energy 33:2566–2577

    Article  Google Scholar 

  27. Al-Sulaiman FA, Dincer I, Hamdullahpur F (2010) Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle. Int J Hydrog Energy 35:5104–5113

    Article  Google Scholar 

  28. Rosen MA, Dincer I (2003) Exergoeconomic analysis of power plants operating on various fuels. Appl Therm Eng 23:643–658

    Article  Google Scholar 

  29. Ameri M, Ahmadi P, Hamidi A: Energy, exergy and exergoeconomic analysis of a steam power plant (2009) A case study. Int J Energy Res 33:499–512

    Google Scholar 

  30. Balli O, Aras H, Hepbasli A (2007) Exergetic performance evaluation of a combined heat and power (CHP) system in Turkey. Int J Energy Res 31:849–866

    Article  Google Scholar 

  31. Balli O, Aras H, Hepbasli A (2008) Exergoeconomic analysis of a combined heat and power (CHP) system. Int J Energy Res 32:273–289

    Article  Google Scholar 

  32. Kwak HY, Byun GT, Kwon YH, Yang H (2004) Cost structure of CGAM cogeneration system. Int J Energy Res 28:1145–1158

    Article  Google Scholar 

  33. Pospisil J, Fiedler J, Skala Z, Baksa M (2006) Comparison of cogeneration and trigeneration technology for energy supply of tertiary buildings. WSEAS Trans Heat Mass Transf 1:262–267

    Google Scholar 

  34. Al-Sulaiman FA, Hamdullahpur F, Dincer I (2011) Performance comparison of three trigeneration systems using organic rankine cycles. Energy 36:5741–5754

    Article  Google Scholar 

  35. Martins L, Fábrega F, d’Angelo J (2012) Thermodynamic performance investigation of a trigeneration cycle considering the influence of operational variables. Procedia Eng 42:2061–2070

    Google Scholar 

  36. Calva ET, Núnez MP, Toral M (2005) Thermal integration of trigeneration systems. Appl Therm Eng 25:973–984

    Article  Google Scholar 

  37. Huang Y, Wang Y, Rezvani S, McIlveen-Wright D, Anderson M, Hewitt N (2011) Biomass fuelled trigeneration system in selected buildings. Energy Convers Manage Â52:2448–2454

    Article  Google Scholar 

  38. Rocha M, Andreos R, Simões-Moreira J (2012) Performance tests of two small trigeneration pilot plants. Appl Therm Eng Â41:84–91

    Article  Google Scholar 

  39. Huicochea A, Rivera W, Gutiérrez-Urueta G, Bruno JC, Coronas A (2011) Thermodynamic analysis of a trigeneration system consisting of a micro gas turbine and a double effect absorption chiller. Appl Therm Eng 31:3347–3353

    Article  Google Scholar 

  40. Chicco G, Mancarella P (2005) Planning aspects and performance indicators for small-scale trigeneration plants. In Future Power Systems, 2005 International Conference on p 6

    Google Scholar 

  41. Chicco G, Mancarella P (2006) Planning evaluation and economic assessment of the electricity production from small-scale trigeneration plants. WSEAS Trans Power Syst 1:393–400

    Google Scholar 

  42. Aghahosseini S, Dincer I, Naterer G (2011) Integrated gasification and Cu–Cl cycle for trigeneration of hydrogen, steam and electricity. Int J Hydrog Energy 36:2845–2854

    Article  Google Scholar 

  43. Minciuc E, Le Corre O, Athanasovici V, Tazerout M, Bitir I (2003) Thermodynamic analysis of tri-generation with absorption chilling machine. Appl Therm Eng 23:1391–1405

    Article  Google Scholar 

  44. Moya M, Bruno J, Eguia P, Torres E, Zamora I, Coronas A (2011) Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller. Appl Energy 88:4424–4440

    Article  Google Scholar 

  45. Velumani S, Enrique Guzmán C, Peniche R, Vega R (2010) Proposal of a hybrid CHP system: SOFC/microturbine/absorption chiller. Int J Energy Res 34:1088–1095

    Article  Google Scholar 

  46. Buck R, Friedmann S (2007) Solar-assisted small solar tower trigeneration systems. Transactions-american society of mechanical engineers. J Sol Energy Eng 129:349

    Article  Google Scholar 

  47. Dincer I, Rosen MA (2012) Exergy: energy, environment and sustainable development. Elsevier Science

    Google Scholar 

  48. Santo D (2012) Energy and exergy efficiency of a building internal combustion engine trigeneration system under two different operational strategies. Energy Build

    Google Scholar 

  49. Ebrahimi M, Keshavarz A, Jamali A (2012) Energy and exergy analyses of a micro-steam CCHP cycle for a residential building. Energy Build 45:202–210

    Article  Google Scholar 

  50. Khaliq A (2009) Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. Int J Refrig 32:534–545

    Article  Google Scholar 

  51. Kong X, Wang R, Huang X (2004) Energy efficiency and economic feasibility of CCHP driven by stirling engine. Energy Convers Manage 45:1433–1442

    Article  Google Scholar 

  52. Ziher D, Poredos A (2006) Economics of a trigeneration system in a hospital. Appl Therm Eng 26:680–687

    Article  Google Scholar 

  53. Temir G, Bilge D (2004) Thermoeconomic analysis of a trigeneration system. Appl Therm Eng 24:2689–2699

    Article  Google Scholar 

  54. Ehyaei M, Mozafari A (2010) Energy, economic and environmental (3E) analysis of a micro gas turbine employed for on-site combined heat and power production. Energy Build 42:259–264

    Article  Google Scholar 

  55. Ozgener O, Hepbasli A (2005) Exergoeconomic analysis of a solar assisted ground-source heat pump greenhouse heating system. Appl Therm Eng 25:1459–1471

    Article  Google Scholar 

  56. Ozgener O, Hepbasli A, Ozgener L (2007) A parametric study on the exergoeconomic assessment of a vertical ground-coupled (geothermal) heat pump system. Build Environ 42:1503–1509

    Article  Google Scholar 

  57. Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55

    Article  Google Scholar 

  58. Amrollahi Z, Ertesvåg IS, Bolland O (2011) Thermodynamic analysis on post-combustion CO capture of natural-gas-fired power plant. Int J Greenh Gas Control 5:422–426

    Article  Google Scholar 

  59. Petrakopoulou F, Boyano A, Cabrera M, Tsatsaronis G (2011) Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology. Int J Greenh Gas Control 5:475–482

    Article  Google Scholar 

  60. Sahoo P (2008) Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming. Appl Therm Eng 28:1580–1588

    Article  Google Scholar 

  61. Sayyaadi H, Sabzaligol T (2009) Exergoeconomic optimization of a 1000 MW light water reactor power generation system. Int J Energy Res 33:378–395

    Article  Google Scholar 

  62. Haseli Y, Dincer I, Naterer G (2008) Optimum temperatures in a shell and tube condenser with respect to exergy. Int J Heat Mass Transf 51:2462–2470

    Article  MATH  Google Scholar 

  63. Sayyaadi H, Nejatolahi M (2011) Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system. Int J Refrig 34:243–256

    Article  Google Scholar 

  64. Ahmadi P, Dincer I, Rosen MA (2011) Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. Energy 36:5886–5898

    Article  Google Scholar 

  65. Sayyaadi H, Babaelahi M (2011) Multi-objective optimization of a joule cycle for re-liquefaction of the liquefied natural gas. Appl Energy 88:3012–3021

    Article  Google Scholar 

  66. Ghaebi H, Saidi M, Ahmadi P (2012) Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm. Appl Therm Eng 36:113–125

    Article  Google Scholar 

  67. Kavvadias K, Maroulis Z (2010) Multi-objective optimization of a trigeneration plant. Energy Policy 38:945–954

    Article  Google Scholar 

  68. Al-Sulaiman FA, Dincer I, Hamdullahpur F (2013) Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part I–Formulations. Energy Convers Manage 59:199–208

    Article  Google Scholar 

  69. Wang J, Yan Z, Wang M, Li M, Dai Y (2013) Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm. Energy Convers Manage 71:146–158

    Article  Google Scholar 

  70. Shirazi A, Aminyavari M, Najafi B, Rinaldi F, Razaghi M (2012) Thermal–economic–environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell–gas turbine hybrid system. Int J Hydrog Energy

    Google Scholar 

  71. Hosseini M, Dincer I, Ahmadi P, Avval HB, Ziaasharhagh M (2011) Thermodynamic modelling of an integrated solid oxide fuel cell and micro gas turbine system for desalination purposes. Int J Energy Res

    Google Scholar 

  72. Ratlamwala T, Gadalla M, Dincer I (2011) Performance assessment of an integrated PV/T and triple effect cooling system for hydrogen and cooling production. Int J Hydrog Energy 36:11282–11291

    Article  Google Scholar 

  73. Ratlamwala T, Dincer I, Gadalla M (2012) Performance analysis of a novel integrated geothermal-based system for multi-generation applications. Appl Therm Eng 40:71–79

    Article  Google Scholar 

  74. Ozturk M, Dincer I (2012) Thermodynamic analysis of a solar-based multi-generation system with hydrogen production. Appl Therm Eng

    Google Scholar 

  75. Ahmadi P, Dincer I, Rosen MA (2012) Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Convers Manage 64:447–453

    Article  Google Scholar 

  76. Ahmadi P, Dincer I, Rosen MA (2013) Development and assessment of an integrated biomass-based multi-generation energy system. Energy 56:155–166

    Article  Google Scholar 

  77. Cohce M, Dincer I, Rosen M (2011) Energy and exergy analyses of a biomass-based hydrogen production system. Bioresour Technol 102:8466–8474

    Article  Google Scholar 

  78. Hughes EE, Tillman DA (1998) Biomass cofiring: status and prospects 1996. Fuel Process Technol 54:127–142

    Article  Google Scholar 

  79. Lian Z, Chua K, Chou S (2010) A thermoeconomic analysis of biomass energy for trigeneration. Appl Energy 87:84–95

    Article  Google Scholar 

  80. Mujeebu M, Jayaraj S, Ashok S, Abdullah M, Khalil M (2009) Feasibility study of cogeneration in a plywood industry with power export to grid. Appl Energy 86:657–662

    Article  Google Scholar 

  81. Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G (2011) Low-grade heat conversion into power using organic Rankine cycles—a review of various applications. Renew Sustain Energy Rev 15:3963–3979

    Article  Google Scholar 

  82. Faizal M, Rafiuddin Ahmed M (2011) On the ocean heat budget and ocean thermal energy conversion. Int J Energy Res 35:1119–1144

    Article  Google Scholar 

  83. Meegahapola L, Udawatta L, Witharana S (2007) The Ocean Thermal Energy Conversion strategies and analysis of current challenges. In Industrial and Information Systems, 2007 ICIIS 2007 International Conference on 123–128

    Google Scholar 

  84. Esteban M, Leary D (2012) Current developments and future prospects of offshore wind and ocean energy. Appl Energy 90:128–136

    Article  Google Scholar 

  85. Uehara H, Nakaoka T (1984) OTEC using plate-type heat exchanger (using ammonia as working fluid). Trans Jpn Soc Mech Engineers 50:1325–1333

    Article  Google Scholar 

  86. Uehara H, Ikegami Y (1990) Optimization of a closed-cycle OTEC system. J Sol Energy Eng (USA) p 112

    Google Scholar 

  87. Uehara H, Miyara A, Ikegami Y, Nakaoka T (1996) Performance analysis of an OTEC plant and a desalination plant using an integrated hybrid cycle. J Sol Energy Eng 118(2):115–122

    Google Scholar 

  88. Yamada N, Hoshi A, Ikegami Y (2009) Performance simulation of solar-boosted ocean thermal energy conversion plant. Renew Energy 34:1752–1758

    Article  Google Scholar 

  89. Cengel YA, Boles MA, Kanoğlu M (2011) Thermodynamics: an engineering approach. McGraw-Hill

    Google Scholar 

  90. Bejan A, Tsatsaronis G, Moran M (1995) Thermal design and optimization. Wiley-Interscience

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Dincer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahmadi, P., Dincer, I., Rosen, M. (2014). Performance Evaluation of Integrated Energy Systems. In: Dincer, I., Midilli, A., Kucuk, H. (eds) Progress in Sustainable Energy Technologies: Generating Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-07896-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07896-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07895-3

  • Online ISBN: 978-3-319-07896-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics