Skip to main content

The Planck DistributionPlanck distribution, a Necessary Consequence of the Fluctuating Zero-Point Field

  • Chapter
  • First Online:
The Emerging Quantum

Abstract

The historical problem of the spectral distributionDistribution of the radiation field in equilibrium at a given temperature is revisited in this chapter. Taking into account the inescapable presence of the fluctuatingFluctuations!zero-point zero-point radiation field, a derivation of Planck’s formula is presented that does not introduce any quantum postulate. The starting point is Wien’sWien!law law, which dictates that the mean energy of a Harmonic oscillator!and spinharmonic oscillator of frequency \(\omega \)—or rather, the mean energy of a monochromatic mode of the radiation field—must be proportional to the frequency. The description obtained through a standard thermodynamic analysis is shown to be incomplete, as it does not provide for the existence of fluctuations at zero temperature. This limitation is lifted by means of a statistical analysis that allows to determine the variance of the Fluctuationsfluctuations of the energy at \(T=0.\) A combination of the outcomes of the two analyses leads to a differential equation, which upon integration gives the Planck distribution Planck distributionat any temperature. The different terms contributing Commutator!and correlationto the energy fluctuations acquire thus a new meaning, different from those assigned to it by Planck and by EinsteinEinstein, A.. The implications of the results regarding the question of continuity or discontinuity of the field energy are discussed, and the chapter concludes with a brief discussion on the reality Realityof the zero-point fluctuations and the origin of quantum fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This first part of the exposition borrows from the work ofBoyer, T.H. Boyer (1969b, 2003), who has contributed substantially to the analysis of the Planck distribution Planck distributionfrom a perspective akin to the one developed here. See alsoBoyer, T.H. Boyer (1969a, 1976, 1983, 1984, 2010a, b, 2012), Marshall (1965), andTheimer O. Theimer (1971).

  2. 2.

    Wien!lawWien’s law is a fundamental law of physics, since only simple and very general principles are required for its derivation. It is valid in classical as well as in quantum physics, and is even consistent with relativity, so it was the appropriate law to herald the 20th century. To get a better feeling of its fundamental nature, a derivation based solely on dimensionality arguments can be found in Sommerfeld’s classical book on Thermodynamics (Sommerfeld A. Sommerfeld 1956). Simple clear discussions of Wien’sWien!law law can be seen in two highly pedagogical papers:Piña, E. De la Selva, S. M. T. Piña and de la Selva (2010), andDel Río-Correa, J. L. del Río-Correa (2010)Mendez, A. F. Ramírez, D..

  3. 3.

    We recall that for the derivation of his law, Wien Wienstudied the Doppler effect of the modes of an adiabatically disturbed radiation field in thermal equilibrium (see e.g. Milonni 1994).

  4. 4.

    Some textbook demonstrations of Wien!lawWien’s law cast doubt about extending its validity to the limit \(T=0.\) That Eq. (3.13) holds also at \(T=0\) is explicitly demonstrated inCole, D. C. Cole (1990).

  5. 5.

    That the only spectrum consistent with relativity (and hence with electromagnetic theory) corresponds to \(\mathcal {E}_{0}(\omega )\sim \omega \) , has been demonstrated independently by several authors. The earliest of such demonstrations are those in Marshall (1963), Santos (1968), andBoyer, T. H. Boyer (1969b). See alsoCole, D. C. Cole (1990),Milonni, P. W. Milonni (1994), Chap. 2; and The Dice, Chap. 4. The present thermodynamic calculation leads to the same expression, Eq. (3.18). Further, the Schrödinger equation provides a similar prediction for the ground-state energy of a particle in a harmonic oscillator potential. Here we have a vivid example of the intrinsic unity of physics, reinforcing the idea that it refers to different aspects of a single reality.

  6. 6.

    Taking \(A=0\) is equivalent to putting the boundary conditionBoundary condition for the solutions of Maxwell’s equations at infinity in the past equal to zero, i. e. no radiation. The choice \(A\ne 0\) replaces this unnatural boundary condition by a zero-point field at infinity, simultaneously restoring time-reversal symmetry in electrodynamics.

  7. 7.

    This form of writing \(W_{g}(\mathcal {E})\) was used, for example, by Einstein (1907) in his early work on the specific heat Specific heatof solids. He considered the distribution in (3.21a) assuming from the start a form for the function \( g(\mathcal {E})\) equivalent to (3.82) below, as was dictated by the quantization discovered by Planck. Here we proceed in the opposite sense, by allowing the theory to determine \(g(\mathcal {E})\).

  8. 8.

    The present discussion draws closely fromCetto, A. M. de la Peña and Cetto (2002), de la Peña et al. (2008, 2010a, b), Valdés-Hernández et al. (2010), Valdés-Hernández (2010)García-Colí, S. L..

  9. 9.

    \(C_{\omega }\) coincides with the specific heatSpecific heat at constant volume, so the usual notation in this context is \(C_{V}\). Still, we employ the subindex \(\omega \) since we are considering \(\omega \) to be a fixed parameter.

  10. 10.

    This is a well-known statistical result, established for the first time by Lorentz Lorentz, H. A.for the thermal radiation field. A simple demonstration is given inVedral V. Vedral (2005). Inclusion of the zero-point component does not modify this statistical property, since the argument to establish it remains in force.

  11. 11.

    Planck’sBoyer!and Planck law law without zero-point energy (the first relation derived by Planck) is obtained by fixing the constant of integration precisely as \(- \mathcal {E}_{0}\), so that \(U(\beta )= \mathcal {E}_{0} \coth \mathcal {E}_{0}\beta -\mathcal {E}_{0}\). The existence of the zero-point energy remains hidden with this choice.

    An additional comment is in place here. At first sight it would seem plausible to take the constant of integration in the first line of Eq. (3.54) as \(\mathcal {E}_{0},\) so that the resulting function, \(U(\omega ,T)=k_{B}T+\mathcal {E}_{0}\) is apparently consistent with both the existence of a nonthermal energy and Wien!lawWien’s law. However, such choice must be discarded since this \(U\) cannot be obtained as a limit case of \({\mathcal {E}}_{0}\ne 0\).

  12. 12.

    An early account of the material in this and the following two subsections is presented inCetto, A. M. de la Peña and Cetto (2002), and de la Peña et al. (2010a, b).

  13. 13.

    The rationale behind Planck’s reading of his formula is the following. If the system composed by the walls of the cavity (represented by a collection of material oscillators) and the enclosed radiation field exchanges energy not continuously but by lumps (which he called quanta) of value \(n\hbar \omega \) (\(n=1,2,3,\ldots \)), then the mean equilibrium energy is

    $$\begin{aligned} U=\frac{\sum _{n=0}^{\infty }n\hbar \omega e^{-\beta n\hbar \omega }}{ \sum _{n=0}^{\infty }e^{-\beta n\hbar \omega }}. \end{aligned}$$

    Performing the summations with the aid of the relation \(\sum _{n=0}^{\infty }x^{n}=1/(1-x),\) one gets

    $$\begin{aligned} U=\frac{\hbar \omega }{e^{\hbar \omega \beta }-1}, \end{aligned}$$

    which is just the \(U_{T}\) in Planck’s theory. If by contrast a continuous exchange of energy is assumed instead of a discrete one, the sum above must be replaced by an integral from \(0\) to \(\infty \). The reader can easily check that in this case the result is the classical formula \(U_{T}=1/\beta =k_{B}T.\)

  14. 14.

    A Poisson distributionDistribution!Poisson refers to the probability of \(n\) independent discrete events taking place simultaneously, and has the form

    $$\begin{aligned} P_{a}(n)=e^{-a}\frac{a^{n}}{n!}. \end{aligned}$$

    It is easy to verify that for this distribution the mean of \(n\) is \( \left\langle n\right\rangle =a\) and its variance is precisely \(\sigma _{n}^{2}=\left\langle n\right\rangle .\)

  15. 15.

    ComplementarityGraded realizations of complementarity relations (wave-like or particle-like behaviorPhoton!particle-like behaviour) have been under close scrutiny during the last decades; see e.g.Jaeger, G. Jaeger et al. (1995), Englert (1996),Bergou, J. A. Engert and Bergou (2000),Li L. Liu, N.-L. Liu et al. (2009), Flores, E. V. Flores and de Tata (2010) (see also Ghose and Home 1996).Ghose, P. The general validity of Einstein’s fluctuation formulaEinstein!fluctuation formula (3.71) had been verified experimentally since earlier times; seeAldemade, C. Th. J. Aldemade et al. (1966)Bolwijn, P. T.,Kattke, G. W. Kattke and van der Ziel (1970). The authors are grateful to M. D. Godfrey for drawing their attention to these references.

  16. 16.

    More detailed discussions of these points, from a modern perspective, are presented in Milonni (1994); see alsoBoyer, T.H. Boyer (1969a) and Jiménez et al. (1980).

  17. 17.

    This is a most significant quantum result. In the quantum statistical descriptionNonlocality!and statistical description the finite quantity \(\hbar ^{3}\) plays the role of a minimal element of volume in phase space. This idea was introduced formally for the first time by Planck in his early studies of the blackbody spectrum Planck, M.(Planck 1900a, b). Later, in 1924, BoseBose, S. N. assumed that two or more distributions of microstates that differ only in the permutation of phase points within a subregion of phase space of volume \(\hbar ^{3},\) are to be regarded as identical, which already corresponds to the Bose-Einstein statisticsBose-Einstein statistics. In the classical description the volume of such elementary cells is taken to tend to zero in order to recover the continuity of the phase space. It is remarkable that, already in his classical statistical studies, Detailed balance!and Maxwell-Boltzmann statisticsBoltzmannBoltzmann introduced Maxwell-Boltzmann statistics!and detailed balanceformally the idea of a discrete phase space (see e.g., Jones 2008, Chap. 3).

  18. 18.

    The existence Fluctuations!of energyof energy fluctuations associated with the natural linewidth Linewidth!naturaland other processes (see e.g. Schiff 1955; Louisell, W. H. Louisell, W. H. Louisell 1973), effectively dilutes this discrete distribution of energies into a somewhat smoothened-out distribution acquiring a more continuous shape. Thus \(g( \mathcal {E})\) should be seen as a theoretical limiting distribution.

  19. 19.

    The transformation defined by (3.95a) and (3.95b) is an extended canonical Distribution!canonicaltransformationCanonical transformations Goldstein, H.(Goldstein 1980), which differs from a canonical Distribution!canonicalone—from the action and angle variables \((J,\theta ),\) with \(J=\mathcal {E}/\omega ,\) to the phase space variables \((p,q)\)—only by a constant factor \(\omega \). Of course \(\theta =\omega t.\)

  20. 20.

    When a probability \(P(x)\) is expressed in terms of a new variable \(y(x)\) as \( W(y),\) the equality \(P(x)dx=W(y)dy\) holds. Equation (3.96) is simply the generalization of this result to a two-dimensional space. See PapoulisPapoulis, A. (1991), Chap. 6 for a detailed derivation.

  21. 21.

    The value of the deep insight of Nernst Nernst, W.will be substantiated in Chaps. 47. This conceptualization is in vivid contrast with the notion of ‘virtual’ usually applied to the Fluctuations!vacuum Vacuum!fluctuationsfluctuating vacuum field.

  22. 22.

    This point is discussed in Chap. 6, in connection with the derivation of the Einstein A-B coefficientsEinstein \(A\) and \(B\) coefficients.

  23. 23.

    There is an extended stance against the assumption of the reality of the fluctuating zpf, based mainly on the argument that it does not activate photon detectors. Another frequent argument refers to the unobserved tremendous gravitational effects that such field should produce. The first objection has been answered by offering models of photon counters compatible with the reality Realityof the zero-point fluctuations Santos E.(Santos 2002a, b). The gravitational puzzle is related to the problem of the cosmological constant, andCosmological constant represents an age-old unsolved fundamental problem that besets a broad parcel of physics Weinberg, S.(see e.g. Weinberg 1989).

References

  • Aldemade, C.Th.J, Bolwijn, P.T., van der Veer, J.H.C.: Single-beam measurement of Bose-Einstein fluctuations in a natural Gaussian radiation field. Phys. Lett. 22, 70 (1966)

    Google Scholar 

  • Birnbaum, Z.W.: Introduction to probability and mathematical statistics. Harper & Row, Tokyo (Chap. 5) (1961)

    Google Scholar 

  • Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir Effect. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  • Bose, S.N.: Plancks Gesetz und Lichtquanten-hypothese. Zeit. Phys. 26, 178 (1924)

    Google Scholar 

  • Boyer, T.H.: Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev. 182, 1374 (1969a). A more comprehensive list of references on the role played by the zpf in connection with Planck’s law, particularly of the earlier extensive work by T. H. Boyer on the subject, can be seen in The Dice

    Google Scholar 

  • Boyer, T.H.: Classical statistical thermodynamics and electromagnetic zero-point radiation, Phys. Rev. 186, 1304 (1969b). Boyer uses the terms ‘caloric’ and ‘probabilistic’ entropies instead of the terms ‘thermal’ and ‘statistical’, respectively, used here

    Google Scholar 

  • Boyer, T.H.: Quantum zero-point energy and long-range forces. Ann. Phys. 56, 474 (1970)

    Google Scholar 

  • *Boyer, T.H.: Equilibrium of random classical electromagnetic radiation in the presence of a nonrelativistic nonlinear electric dipole oscillator. Phys. Rev. D 13, 2832 (1976)

    Google Scholar 

  • Boyer, T.H.: Derivation of the Planck radiation spectrum as an interpolation formula in classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 27, 2906 (1983)

    Article  ADS  Google Scholar 

  • Boyer, T.H.: Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation. Phys. Rev. D 29, 1096 (1984)

    Article  ADS  Google Scholar 

  • Boyer, T.H.: Thermodynamics of the harmonic oscillator: Wien’s displacement law and the Planck spectrum. Am. J. Phys. 71, 866 (2003)

    Article  ADS  Google Scholar 

  • Boyer, T.H.: Blackbody radiation and the scaling symmetry of relativistic classical electron theory with classical electromagnetic zero-point radiation. Found. Phys. 40, 1102 (2010a)

    Article  ADS  MATH  Google Scholar 

  • Boyer, T.H.: Derivation of the Planck spectrum for relativistic classical scalar radiation from thermal equilibrium in an accelerating frame. Phys. Rev. D 81, 105024 (2010b)

    Article  ADS  Google Scholar 

  • Boyer, T.H.: The blackbody radiation spectrum follows from zero-point radiation and the structure of relativistic spacetime in classical physics. Found. Phys. 42, 595 (2012)

    Article  ADS  MATH  Google Scholar 

  • Callen, H.B.: Thermodynamics and an introduction to thermostatistics, 2nd edn. Wiley, New York (1985) (Chap.17)

    Google Scholar 

  • Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. I. Wiley, New York (1977) (Chap. 3)

    Google Scholar 

  • Cole, D.C.: Derivation of the classical electromagnetic zero-point radiation spectrum via a classical thermodynamic operation involving van der Waals forces. Phys. Rev. A 42, 1847 (1990)

    Article  ADS  Google Scholar 

  • Davydov, S.: Quantum Mechanics. Addison-Wesley, Oxford (1965)

    Google Scholar 

  • de la Peña, L., Cetto, A.M.: The Quantum Dice, An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996) (Referred to in the book as The Dice)

    Google Scholar 

  • de la Peña, L., Cetto, A.M.: Planck’s law as a consequence of the zero-point radiation field. Rev. Mex. Fís. 48 (Suppl. 1), 1 (2002)

    Google Scholar 

  • de la Peña, L., Valdés-Hernández, A., Cetto, A.M.: Statistical consequences of the zero-point energy of the harmonic oscillator. Am. J. Phys. 76, 947 (2008)

    Article  ADS  Google Scholar 

  • de la Peña, L., Valdés-Hernández, A., Cetto, A.M.: La ley de Planck, notable e inevitable consecuencia del campo de punto cero. in: García-Colín Scherer, L., del Río-Correa, J.L., Uriarte Rivera, H. (eds.) Max Planck, a ciento cincuenta años de su nacimiento. El Colegio Nacional, Mexico (2010a)

    Google Scholar 

  • de la Peña, L., Valdés-Hernández, A., Cetto, A.M.: Wien’s Law with Zero-Point Energy Implies Planck’s Law Unequivocally. In: New Trends in Statistical Physics. Festschrift in Honor of Leopoldo García-Colín’s 80th Birthday. World Scientific, Singapore (2010b)

    Google Scholar 

  • del Río-Correa, J.L.: Las diferentes facetas de la ley de Wien, in: Peralta, J.A., Ramírez, D., Mendez, A.F. (eds.) Memorias de la XV Reunión Nacional de Física y Matemáticas 2010, p. 274. ESFM, IPN, México (2010)

    Google Scholar 

  • Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. d. Phys. 17, 132 ( 1905a). http://onlinelibrary.wiley.com/doi/10.1002/andp.19053220607/pdf. English translation in A. B. Arons and M. B. Peppard 1965, Einstein’s proposal of the photon concept: A translation of the Annalen der Physik paper of 1905, Am. J. Phys. 33, 367; http://astro1.panet.utoledo.edu/ljc/PE_eng.pdf. Also in The Collected Papers of Albert Einstein (Princeton University Press, Princeton), Vol. 3

  • Einstein, A.: Letter to Conrad Habicht, May 18 or 25. English translation in The Collected Papers of Albert Einstein, vol. 5, 31. An interesting discussion of this point is presented in Rigden 2005 (1905b)

    Google Scholar 

  • Einstein, A.: Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, Ann. d. Phys. 22, 180 (1907). English translation in The Collected Papers of Albert Einstein

    Google Scholar 

  • Einstein, A.: Zum gegenwärtigen Stand des Strahlungsproblems, Zeit. Phys. 10, 185 (1909). English translation in The Collected Papers of Albert Einstein

    Google Scholar 

  • Einstein, A., Stern, O.: Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt, Ann. d. Phys. 40, 551 (1913). English translation in The Collected Papers of Albert Einstein

    Google Scholar 

  • Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154 (1996)

    Article  ADS  Google Scholar 

  • Engert, B.-G., Bergou, J.A.: Quantitative quantum erasure. Opt. Commun. 179, 337 (2000)

    Article  ADS  Google Scholar 

  • Flores, E.V., de Tata, J.M.: Complementarity paradox solved: surprising consequences. Found. Phys. 40, 1731 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Ghose, P., Home, D.: The two-prism experiment and wave-particle duality of light. Found. Phys. 26, 943 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  • Goldstein, H.: Classical Mechanics, 2nd edn. Addison Wesley, Reading (1980)

    MATH  Google Scholar 

  • Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Clarendon Press, Oxford (1983) (Chap. 4)

    Google Scholar 

  • Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Distribution functions in physics: fundamentals. Phys. Rep. 106, 121 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Jaeger, G., Shimony, A., Vaidman, L.: Two interferometric complementarities. Phys. Rev. A 51, 54 (1995)

    Article  ADS  Google Scholar 

  • James, R.W., Waller, T., Hartree, D.R.: An investigation into the existence of zero-point energy in the rock-salt lattice by an X-ray diffraction method. Proc. Roy. Soc. A 118, 334 (1928)

    Article  ADS  Google Scholar 

  • Jiménez, J.L., de la Peña, L., Brody, T.: Zero-point term in cavity radiation. Am. J. Phys. 48, 840 (1980)

    Article  ADS  Google Scholar 

  • Jones, S.: The Quantum-Ten. Oxford University Press, New York (2008)

    Google Scholar 

  • José, J.V., Saletan, E.J.: Classical Dynamics. A Contemporary Approach. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  • Kattke, G.W., van der Ziel, A.: Verification of Einstein’s formula for fluctuations in thermal radiation. Physica 49, 461 (1970)

    Article  ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn. Course of Theoretical Physics, vol. 1. Butterworth-Heinemann, Oxford (1976)

    Google Scholar 

  • Landsberg, P.T.: Einstein and statistical thermodynamics II. Oscillator quantisation. Eur. J. Phys. 2, 208 (1981)

    Article  MathSciNet  Google Scholar 

  • Liu, N.-L., Li, L., Yu, S., Chen, Z.-B.: Duality relation and joint measurement in a Mach-Zehnder interferometer. Phys. Rev. A 79, 052108 (2009)

    Article  ADS  Google Scholar 

  • Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York ( 1973) (Chap. 5)

    Google Scholar 

  • Mandl, F.: Statistical Physics. Wiley, New York (1988)

    Google Scholar 

  • Marshall, T.W.: Random electrodynamics. Proc. Roy. Soc. A 276, 475 (1963)

    Article  ADS  MATH  Google Scholar 

  • Marshall, T.W.: A classical treatment of blackbody radiation. Nuovo Cim. 38, 206 (1965)

    Article  Google Scholar 

  • Milonni, P.W.: The Quantum Vacuum. Academic Press, New York (1994)

    Google Scholar 

  • Nernst, W.: Uber einen Versuch, von quantentheoretischen Betrachtungen zur Annahme stetiger Energieänderungen zurückzukehren. Verh. Deutsch. Phys. Ges. 18, 83 (1916)

    Google Scholar 

  • Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, Boston (1991) (Chap. 6)

    Google Scholar 

  • Pathria, R.K.: Statistical Mechanics. Butterworth-Heinemann, Oxford (1996)

    MATH  Google Scholar 

  • Piña, E., de la Selva, S.M.T.: Thermodynamics of radiation modes. Eur. J. Phys. 31, 393 (2010)

    Article  Google Scholar 

  • Planck, M.: Über eine Verbesserung der Wienschen Spektralgleichung, Verh. Deutsch. Phys. Ges. 2, 202 (1900a). English translation in ter Haar 1967, 79, On an Improvement of Wien’s Equation for the Spectrum

    Google Scholar 

  • Planck, M.: Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum, Verh. Deutsch. Phys. Ges. 2, 237 (1900b). English translation in D. ter Haar, The Old Quantum Theory (Pergamon Press, Oxford, 1967) 82

    Google Scholar 

  • Planck, M.: Über die Begründung des Gesetzes der schwarzen Strahlung. Ann. d. Phys. 37, 642 (1912)

    Google Scholar 

  • Rigden, J.S.: Einstein’s revolutionary paper, Physics World, http://physicsweb.org/articles/world/18/4/2 (2005)

  • Santos, E.: Is there an electromagnetic background radiation underlying the quantum phenomena?, p. 317. LXIV. An. Real Soc. Esp. Fís. Quím (1968)

    Google Scholar 

  • Santos, E.: Comment on ‘presenting the Planck’s relation \(E=nh\nu \)’. Am. J. Phys. 43, 743 (1975)

    Article  ADS  Google Scholar 

  • Santos, E.: Can quantum vacuum fluctuations be considered real? arXiv: http://arxiv.org/abs/quant-ph/0206161v1quant-ph/0206161v1 (2002a)

  • Santos, E.: How photon detectors remove vacuum fluctuations. arXiv: http://arxiv.org/abs/quant-ph/0207073v2quant-ph/0207073v2 Sept 2002 (2002b)

  • Schiff, L.: Quantum Mechanics. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  • Sommerfeld, A.: Thermodynamics and Statistical Mechanics. Academic Press, New York (1956)

    MATH  Google Scholar 

  • Theimer, O.: Derivation of the blackbody radiation spectrum by classical statistical mechanics. Phys. Rev. D 4, 1597 (1971)

    Article  ADS  Google Scholar 

  • Theimer, O.: Blackbody spectrum and the interpretation of the quantum theory. Am. J. Phys. 44, 183 (1976)

    Article  ADS  Google Scholar 

  • Valdés-Hernández, A.: Investigación del origen del enredamiento cuántico desde la perspectiva de la Electrodinámica Estocástica Lineal, Ph. D. Thesis, Universidad Nacional Autónoma de México, Mexico (2010)

    Google Scholar 

  • *Valdés-Hernández, A., de la Peña, L., Cetto, A.M.: in: Macías, A., Dagdug, L. (eds.) New Trends in Statistical Physics: Festschrift in Honor of Leopoldo García-Colín’s 80th Birthday, p. 113. World Scientific, Singapore (2010)

    Google Scholar 

  • Vedral, V.: Modern Foundations of Quantum Optics. Imperial College Press, London (2005) (Chap. 3)

    Google Scholar 

  • Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Wollan, E.O.: Experimental electron distributions in atoms of monatomic gases. Phys. Rev. 38, 15 (1931)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Cetto .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Peña, L., Cetto, A.M., Valdés Hernández, A. (2015). The Planck DistributionPlanck distribution, a Necessary Consequence of the Fluctuating Zero-Point Field. In: The Emerging Quantum. Springer, Cham. https://doi.org/10.1007/978-3-319-07893-9_3

Download citation

Publish with us

Policies and ethics