Skip to main content

The Phenomenological Stochastic Approach: A Short Route to Quantum Mechanics

  • Chapter
  • First Online:

Abstract

In preparation for the chapters that follow, this one offers an introduction to the study of quantum mechanics as a stochastic process, in the form of a basic phenomenological theory knownNelson theory as stochastic (or Nelson) mechanics, or Stochastic quantum mechanicsstochastic quantum mechanics. The kinematics of the process is developed first, using a description of the motion of particles that involves finite time intervals \(\Delta t\) and up to second-order derivatives; this kinematics is made in terms of two different velocities and four accelerations. An extended ‘Newton’s Second Law’ involving a linear combination of these accelerations, leads under appropriate conditions to two equations, one being equivalent to the Continuity equationcontinuity equation and the second one representing a general dynamical law. The Schrödinger equationDetailed energy balance!and Schrödinger equation follows from this set of equations for a particular selection of the parameters. By ignoringCetto, A. M. the source of the stochasticity, this theory does not provide the elements to derive the value of the parameters; this is shown to be one of its main limitations. It has, however, the value of providing an intuitive physical image of the stochastic process underlying quantum mechanics. Moreover, by showing that the Brownian process implies an altogether different choice of the parameters, it establishes a neat distinction between classical and quantum stochastic processesQuantum stochastic process.

Some physicists, among them myself, cannot believe that we must abandon, actually and forever, the idea of direct representation of physical reality in space and time...

A. Einstein (1954)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Not quite independently of the interpretation, strictly speaking. For example, Bell (1987, article 19) argues that “\(\ldots \)the reversibility of the SchrödingerDetailed balance!and Schrödinger equation equation strongly suggests that quantum mechanics is not fundamentally stochastic in nature.” This sentence sounds tempting\(\ldots \) At this stage, how would you respond to it? (An answer is given at the end of the chapter.)

  2. 2.

    Randomness plays an important role in several interpretations of qm, in addition to the one developed in this book. A case of major interest is Griffiths’ theory of consistent historiesConsistent histories, according to which most of the evolution is due to randomness. See Omnès (1994, 1999a, b), Griffiths (1996), Griffiths and Omnés (1999).

  3. 3.

    At least two other stochastic proposals were made almost simultaneously to Féynes’ work, byNovobátzky, K. Novobátzky (1951) and Takabayasi (1952)Takabayasi, T.. A detailed account of the first developments of the stochastic approach to qm can be seen in Jammer (1974), Chap. 9.

  4. 4.

    As noted earlier, Nelson Nelson theorycalls the theoryBergmann, P. G. simply stochastic mechanics Stochastic mechanics. His work is that of a mathematician and should be of major interest to the more mathematically inclined readers. There is another entirely different theory that goes under the same name stochastic quantum mechanics, pioneered by Prugovečki (1984, 1995)Engliš, M. Prugovečki, E. [see also Ali and Engliš (2005); Ali and Prugovečki (1986)]. It represents an attemptAli, S. T. to unify physics into a rigorous quantum structure that considers a quantum spacetime and a universe which on the microscopic level follows a stochastic rather than deterministic evolution. Further, it should be noted that some authors speak of stochastic quantum mechanics Stochastic quantum mechanics while referring to Bohm’s theorySrivastava, Y. N. Feligioni, L. (see e.g. Feligioni et al. 2005).

  5. 5.

    By writing

    $$\begin{aligned} \frac{g(\varvec{x};t^{\prime \prime })-g(\varvec{x};t^{\prime })}{2\Delta t}=\frac{1}{2\Delta t}\int \nolimits _{t^{\prime }}^{t^{\prime }+2\Delta t} \frac{\partial g(\varvec{x};s)}{\partial s}ds \end{aligned}$$

    it becomes clear that this expression is a coarse-grained time-derivative obtained by time-averaging the derivative \(\partial g/\partial t.\) This procedure mimicks the time smoothing produced by an observation, which is always extended in time. Such smoothing is particularly appropriate to deal with highly irregular (and even non-differentiable) functions.

  6. 6.

    The moving average \(x_{\Delta t}(t)\) of \(x(t)\) is defined as \(x_{\Delta t}(t)=(1/\Delta t)\int _{t}^{t+\Delta t}x(\tau )d\tau .\)

  7. 7.

    To reproduce the above results it is required that the second moment \( \left\langle \left( \delta \varvec{x}_{+}\right) ^{2}\right\rangle \) be proportional to \(\Delta t,\) so that \(\left\langle (\Delta _{+}\varvec{x})^{2}\right\rangle /\Delta t\) acquires a finite value [as demanded by Eq. (2.6)]. This is a characteristic feature of Brownian motion (or rather, of a white noiseWhite noise), and explains the extended reference to theories as the present one as ‘Brownian-motion theories’.

  8. 8.

    In the literature it is possible to find the velocity \(\varvec{u}\) defined with the sign reversed. Equation (2.27) can be recast into the form \(\varvec{j}_{\text {diff}}\equiv \varvec{u}\rho =D \varvec{\nabla }\rho ,\) known as Fick’s law (with due allowance for the reversed sign).

  9. 9.

    The hipothesis of a Brownian process without friction is just the most characteristic feature of Nelson’s (1966, 1985a, 2012) theory.

  10. 10.

    In Davidson, M.P.(Davidson 1979b and 2001) an interesting, slightly different selection of the parameters is discussed, which reproduces the classical nonlinear Schrödinger equation, derived in Sect. 4.5.5 of this book. See also (Bacciagaluppi 2011).

  11. 11.

    Although giving rise to some bizarre wave phenomena; for comments and examples of this see e.g. Ballentine 1990, 1998.

  12. 12.

    For example, when solving the Heisenberg, W.Heisenberg equations of motion for \(x\) and \(p,\) the initial conditions are given by matrices, which guarantees that the Heisenberg inequalitiesHeisenberg inequalities are satisfied starting from \(t=0.\)

  13. 13.

    The idea that the quantum stationary states are some kind of attractors within an appropriate set of solutions has been arrived at from other, complementary points of view; see e.g. de la Peña and Cetto Cetto, A. M.(1995), ’t Hooft T’Hooft, G.(2006).

  14. 14.

    Some of these matters are discussed in Vasudevan Vasudevan, R. Gopalan, M. N. Beckmann, M. J. Parthasarathy, K. V.et al. (2008). For the relativistic case see also Ramanathan Ramanathan, R. (1997). Extensive and Complementaritycomplementary lists of references to earlier work can be found in Jammer, M.Jammer (1974), Guerra, F.Guerra (1981 Waldenfels, W. V., 1984, 1988), Blanchard, Ph.Blanchard et al. (1987), de la Peña and Cetto Cetto, A. M.(1991)Reichl, L. E., and The Dice.

  15. 15.

    The formula for the acceleration \(\varvec{a}_{B}\) for classical (Brownian) particles is of course as nonlocal as the quantum acceleration, but nobody denies the usefulness of the Brownian-motion theory of Einstein and Smoluchowski within its domain of applicability. It even played a most important and historic role in the empirical demonstration of the reality Realityof molecules at the beginning of the 20th century! Such description of the Brownian case is admittedly not a fundamental one. In the quantum case a problem arises when interpreting it as a fundamental theory, since a fundamental expression for the acceleration must be local.

  16. 16.

    Recently, Nelson has attempted to apply stochastic mechanics Stochastic mechanicsto relativistic fields, hoping to avoid the above mentioned nonlocality features, and aiming to develop useful technical tools in constructive field theory (see Nelson 2013).

References

  • Abbott, L.F., Wise, M.B.: Dimension of a quantum-mechanical path. Am. J. Phys. 49, 37 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  • Ali, T., Engliš, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17, 391 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Ali, S.T., Prugovečki, E.: Mathematical problems of stochastic quantum mechanics. Acta Appl. Math. 6, 1 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Alpatov, P., Reichl, L.E.: Spectral properties of a time-periodic Fokker-Planck equation. Phys. Rev. E 49, 2630 (1994)

    Article  ADS  Google Scholar 

  • Bacciagaluppi, G.: Non-equilibrium in Stochastic Mechanics. J. Phys. Conf. Series 361, 012017 (2011)

    Article  ADS  Google Scholar 

  • Ballentine, L.E.: Quantum Mechanics. Prentice Hall, NJ (1990)

    Google Scholar 

  • Ballentine, L.: Quantum Mechanics. A Modern Development. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  • Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Princeton, Princeton U. P (1987)

    MATH  Google Scholar 

  • Bess, L.: A diffusion model for the Schrödinger equation. Progr. Theor. Phys. 49, 1889 (1973)

    Article  ADS  Google Scholar 

  • Blanchard, P., Combe, P., Zheng, W.: Mathematical and Physical Aspects of Stochastic Mechanics. Lecture Notes in Physics, vol. 281. Springer, Berlin (1987)

    Google Scholar 

  • Blanchard, P., Garbaczewski, P.: Natural boundaries for the Smoluchowski equation and affiliated diffusion processes. Phys. Rev. E 49, 3815 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • Brady, R., Anderson R.: Analogue Physics. A Student’s Guide to Waves in An Ideal Fluid (Cambridge University Computer Center, 2013)

    Google Scholar 

  • Budiyono, A.: Possible corrections to quantum mechanical predictions in a hidden variable model. Physica A 391, 3081 (2012a)

    Google Scholar 

  • Budiyono, A.: Quantum fluctuations as deviation from classical dynamics of ensemble of trajectories parameterized by unbiased hidden random variable. Physica A 391, 3102 (2012b)

    Google Scholar 

  • Budiyono, A.: Quantization from Hamilton-Jacobi theory with a random constraint. Physica A 391, 4583 (2012c)

    Google Scholar 

  • Budiyono, A.: Objective uncertainty relation with classical background in a statistical model. Physica A 392, 43 (2013a)

    Google Scholar 

  • Budiyono, A.: Quantization from an exponential distribution of infinitesimal action. Physica A 392, 307 (2013b)

    Google Scholar 

  • Cetto, A.M.: Investigaciones sobre una teoría estocástica de la mecánica cuántica. Ph.D. thesis, UNAM, Mexico, 1972

    Google Scholar 

  • Comisar, G.G.: Brownian-motion model of nonrelativistic quantum mechanics. Phys. Rev. B 138, 1332 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  • Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phy. Rev. Lett. 97, 154101 (2006)

    Google Scholar 

  • Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Dynamical phenomena: Walking and orbiting droplets. Nature 437(7056), 208 (2005)

    Google Scholar 

  • Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  • Davidson, M.P.: A classical realization of quantum mechanics. Found. Phys. 8, 481 (1978)

    Article  ADS  Google Scholar 

  • Davidson, M.P.: A dynamical theory of markovian diffusion. Physica A 96, 465 (1979a)

    Google Scholar 

  • Davidson, M.P.: A generalization of the Fenyes-Nelson stochastic model of quantum mechanics, Lett. Math. Phys. 3, 271 (1979b), arXiv: quant-ph/0112063

  • Davidson, M.P.: A model for the stochastic origins of Schrodinger’s equation. J. Math. Phys. 20, 1865 (1979c)

    Article  MathSciNet  ADS  Google Scholar 

  • Davidson, M.P.: Momentum in stochastic quantum mechanics, Lett. Math. Phys. 5, 23 (1981), arXiv: quant-ph/0112114v1

  • Davidson, M.P.: Stochastic models of quantum mechanics—A perspective. In: Adenier, G., Khrennikov, A.Y., Fuchs, C.A. (eds.) Foundations of Probability and Physics 4. American Institute of Physics Inc., New York, p. 106 (2007) (AIP Conference Proceedings 889)

    Google Scholar 

  • de Broglie, L.: Le mouvement brownien d’une particule dans son onde. C. R. Acad. Sci. Paris B 264, 1041 (1967)

    Google Scholar 

  • de la Peña, L.: A simple derivation of the Schrödinger equation from the theory of Markov processes. Phys. Lett. A 24, 603 (1967)

    ADS  Google Scholar 

  • de la Peña, L.: New formulation of stochastic theory and quantum mechanics. J. Math. Phys. 10, 1620 (1969)

    Article  MATH  ADS  Google Scholar 

  • de la Peña, L: New formulation of stochastic theory and quantum mechanics. V: The relativistic spinless particle. Rev. Mex. Fís. 19, 133 (1970)

    Google Scholar 

  • de la Peña, L.: Stochastic theory of quantum mechanics for particles with spin. J. Math. Phys. 12, 453 (1971)

    Google Scholar 

  • de la Peña, L., Cetto, A.M.: New formulation of stochastic theory and quantum mechanics. IV: The two-particle system. Rev. Mex. Fís. 18, 323 (1969)

    Google Scholar 

  • de la Peña, L., Cetto, A.M.: Self-interaction corrections in a nonrelativistic stochastic theory of quantum mechanics. Phys. Rev. D 3, 795 (1971)

    Article  ADS  Google Scholar 

  • \(\ddagger \ddagger \)de la Peña, L., Cetto, A.M.: Stochastic theory for classical and quantum mechanical systems. Found. Phys. 5, 355 (1975)

    Google Scholar 

  • \(\ddagger \ddagger \)de la Peña, L., Cetto, A.M.: Does quantum mechanics accept a stochastic support? Found. Phys. 12, 1017 (1982) (Reprinted in Quantum Space and Time: The Quest Continues, A. O. Barut, A. van der Merwe and J.-P. Vigier, eds., (Cambridge University Press 1984).)

    Google Scholar 

  • *de la Peña, L., Cetto, A.M.: Electromagnetic vacuum-particle interaction as the source of quantum phenomena. Found. Phys. Lett. 12, 476 (1991)

    Google Scholar 

  • *de la Peña, L., Cetto, A.M.: Role of the zeropoint field in wave mechanics. In: Courants, Amers, Écueils en Microphysique, p. 311. Fondation Louis de Broglie, Paris (1993)

    Google Scholar 

  • *de la Peña, L., Cetto, A.M.: Is quantum mechanics a limit cycle theory? In: Ferrero, M., van der Merwe, A. (eds.) Fundamental Problems in Quantum Physics. Kluwer, Dordrecht (1995)

    Google Scholar 

  • **de la Peña, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996) (Referred to in the book as The Dice)

    Google Scholar 

  • De Raedt, H., Michielsen, K.: Event-by-event simulation of quantum phenomena. Ann. d. Phys. 524, 393 (2012)

    Article  ADS  Google Scholar 

  • \(\ddagger \)Dohrn, D., Guerra, F., Ruggiero, P.: Spinning particles and relativistic particles in the framework of Nelson’s stochastic mechanics. In: Albeverio, S., et al. (eds.) Feynman Path Integrals. Springer Lecture Notes in Physics, vol. 106, pp. 165–181. Springer, Berlin (1979)

    Google Scholar 

  • Einstein, A.: On Quantum Physics (1954)

    Google Scholar 

  • L. Feligioni, O. Panella, Y.N. Srivastava and A. Widom: Two-time correlation functions: stochastic and conventional quantum mechanics. Eur. Phys. J. B 48, 233 (2005)

    Article  ADS  Google Scholar 

  • Fényes, I.: A deduction of Schrödinger equation. Acta Bolyaina 1, 5 (1946)

    Google Scholar 

  • Féynes, I.: Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik. Zeit. Phys. 132, 81 (1952)

    Google Scholar 

  • Fritsche, L., Haugk, M.: A new look at the derivation of the Schrödinger equation from Newtonian mechanics. Ann. Phys. (Leipzig) 12, 371 (2003)

    Google Scholar 

  • Fritsche, L., Haugk, M.: Stochastic Foundation of Quantum Mechanics and the Origin of Particle Spin (2009), arXiv: abs/0912.3442v1 [physics.gen-ph]

  • Fürth, R.: Über einige Beziehungen zwischen klassischer Statistik und Quantummechanik. Zeit. Phys. 81, 143 (1933)

    Google Scholar 

  • Garbaczewski, P.: Random versus deterministic paths in stochastic mechanics. Phys. Lett. A 143, 85 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  • Garbaczewski, P.: Relativistic problem of random flights and Nelson’s stochastic mechanics. Phys. Lett. A 164, 6 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Garbaczewski, P.: Derivation of the quantum potential from realistic Brownian particle motions. Phys. Lett. A 162, 129 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Garbaczewski, P.: Physical significance of the Nelson-Newton laws. Phys. Lett. A 172, 208 (1993a)

    Article  MathSciNet  ADS  Google Scholar 

  • Garbaczewski, P.: On the statistical origins of the de Broglie-Bohm quantum potential: Brownian motion in a field of force as Bernstein diffusion. Phys. Lett. A 178, 7 (1993b)

    Article  MathSciNet  ADS  Google Scholar 

  • Garbaczewski, P.: Dynamics of coherent states as the diffusion process: Schrödinger’s system, Bernstein processes and quantum evolution. In: Feng, D.H., Klauder, J.R., Strayer, M.R. (eds.) Coherent States: Past, Present and Future. World Scientific, Singapore (1994)

    Google Scholar 

  • Garbaczewski, P., Klauder, J.R., Olkiewicz, R.: Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics. Phys. Rev. E 51, 4114 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  • Gardiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin (1983)

    Google Scholar 

  • Gaveau, B., Jacobson, T., Kac, M., Schulman, L.S.: Relativistic extension of the analogy between quantum mechanics and brownian motion. Phys. Rev. Lett. 53, 419 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  • \(\ddagger \)Ghirardi, G.C., Omero, C., Rimini, A., Weber, T.: The stochastic interpretation of quantum mechanics: a critical review. Riv. Nuovo Cim. 1, 1 (1978)

    Google Scholar 

  • \(\ddagger \)Gillespie, D.T.: Incompatibility of the Schrödinger equation with Langevin and Fokker-Planck equations. Found. Phys. 25, 1041 (1995)

    Google Scholar 

  • \(\ddagger \ddagger \)Goldstein, S.: Stochastic mechanics and quantum theory. J. Stat. Phys. 47, 645 (1987)

    Google Scholar 

  • \(\ddagger \)Grabert, H., Hänggi, P., Talkner, P.: Is quantum mechanics equivalent to a classical process? Phys. Rev. A 19, 2440 (1979)

    Google Scholar 

  • Griffiths, R.B.: Consistent histories and quantum reasoning. Phys. Rev. A 54, 2759 (1996)

    Article  ADS  Google Scholar 

  • Griffiths, R.B., Omnés, R.: Consistent histories and quantum measurements. Phys. Today 52(8), 26 (1999)

    Article  Google Scholar 

  • Guerra, F.: Structural aspects of stochastic mechanics and stochastic field theory. Phys. Rep. 77, 263 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  • Guerra, F.: Probability and quantum mechanics. The conceptual foundations of stochastic mechanics. In: Accardi, L., Waldenfels, W.V. (eds.) Quantum Probability and Applications I. Lecture Notes in Mathematics, vol. 1055. Springer, Berlin (1984)

    Google Scholar 

  • Guerra, F.: Probability and quantum mechanics. The conceptual foundations of stochastic mechanics. In: Accardi, L., Waldenfels, W.V. (eds.) Quantum Probability and Applications II. Lecture Notes in Mathematics, vol. 1136. Springer, Berlin (1985)

    Google Scholar 

  • Guerra, F.: Stochastic variational principles and quantum mechanics. Ann. Inst. Henri Poincaré 49, 314 (1988)

    MathSciNet  Google Scholar 

  • Guerra, F., Marra, R.: Origin of the quantum observable operator algebra in the frame of stochastic mechanics. Phys. Rev. D 28, 1916 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  • Guerra, F., Morato, L.M.: Quantization of dynamical systems and stochastic control theory. Phys. Rev. D 27, 1774 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  • Hakim, R.: Relativistic stochastic processes. J. Math. Phys. 9, 1085 (1968)

    Google Scholar 

  • Hall, F.G., Collins, R.E.: Stochastic processes and their representations in Hilbert space. J. Math. Phys. 12, 100 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Holland, P.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  • Jamison, B.: Reciprocal processes. Z. Wahrsch. Verw. Gebiete 30, 65A (1974)

    Article  MathSciNet  Google Scholar 

  • Jammer, M.: The Philosophy of Quantum Mechanics: The Interpretation of Quantum Mechanics in Historical Perspective. Wiley, New York (1974)

    Google Scholar 

  • Jona-Lasinio, G., Martinelli, F., Scoppola, E.: The semiclassical limit of quantum mechanics: a qualitative theory via stochastic mechanics. Phys. Rep. 77, 313 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  • Kershaw, D.: Theory of hidden variables. Phys. Rev. B 136, 1850 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  • Kracklauer, A.F.: An intuitive paradigm for quantum mechanics. Phys. Essays 5, 226 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Kyprianidis, A.: The principles of a stochastic formulation of quantum theory. Found. Phys. 22, 1449 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Lisi, A.G.: Quantum mechanics from a universal action reservoir (2006), arXiv: physics/0605068 [physics.pop-ph]

  • Loffredo, M.I., Morato, L.M.: Selfconsistent hydrodynamical model for He II near the absolute zero in the framework of stochastic mechanics. Phys. Rev. B 35, 1742–1747 (1987)

    Article  ADS  Google Scholar 

  • Loffredo, M.I., Morato, L.M.: Stochastic quantization for a system of N identical interacting Bose particles. J. Physica A Math. Theor. 40, 8709 (2007)

    Google Scholar 

  • Marra, R.: Variational principles for conservative and dissipative diffusions. Phys. Rev. D 36, 1724 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  • McClendon, M., Rabitz, H.: Numerical simulations in stochastic mechanics. Phys. Rev. A 37, 3479 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  • \(\ddagger \)Mielnik, B., Tengstrand, G.: Nelson-Brown motion: some question marks. Int. J. Theor. Phys. 19, 239 (1980)

    Google Scholar 

  • Michielsen, K., Yuan, S., Zhao, S., Jin, F., De Raedt, H.: Coexistence of full which-path information and interference in Wheeler’s delayed-choice experiment with photons. Physica E 42, 348 (2010)

    Google Scholar 

  • Morato, L.M.: A new approach to the problem of relativistic kinematics in stochastic mechanics and a derivation of Klein-Gordon equation. In: Guerra, F., Loffredo, M.I., Marchioro C. (eds.) Proceedings of the International Workshop on “Probabilistic Methods in Mathematical Physics". World Scientific, Singapore (1992)

    Google Scholar 

  • Moreno Murguía B.: Simulación del efecto túnel en el formalismo de la mecánica cuántica estocástica. Professional thesis, Universidad Nacional Autónoma de México, Mexico (2006)

    Google Scholar 

  • Nassar, A.B.: Ermakov and non-Ermakov systems in quantum dissipative models. J. Math. Phys. 27, 755 (1986a)

    Article  MathSciNet  ADS  Google Scholar 

  • Nassar, A.B.: Logarithmic nonlinearities within the framework of stochastic mechanics. Phys. Rev. A 33, 2134 (1986b)

    Article  MathSciNet  ADS  Google Scholar 

  • Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

    Article  ADS  Google Scholar 

  • Nelson, E.: Dynamical Theories of Brownian Motion. Mathematical Notes. Princeton University Press, New Jersey (1967)

    Google Scholar 

  • Nelson, E.: Construction of quantum fields from Markoff fields. J. Funct. Anal. 12, 97 (1973)

    Article  MATH  Google Scholar 

  • Nelson, E.. In: Brittin, W.E., Gustafson, K.E., Wyss, W. (eds.) Mathematical Physics VII, Proceedings of the Seventeenth International Congress on Mathematical Physics, p. 509. North-Holland, Amsterdam (1984)

    Google Scholar 

  • Nelson, E.: Quantum Fluctuations. Princeton Series in Physics. Princeton University Press, New Jersey (1985a)

    Google Scholar 

  • Nelson, E.: A survey of stochastic mechanics. In: Proceedings of the International Conference on Quantum Statistics and Foundational Problems on Quantum Mechanics, Hadronic Journal Supplement, vol. 1, p. 401 (1985b)

    Google Scholar 

  • Nelson, E.: What is stochastic mechanics? In: Mathématiques Finitaires et Analyse non-Standard, Journées Société Mathématique de France, vol. 1. CIRM, Luminy (1985c)

    Google Scholar 

  • Nelson, E.. In: Albeverio, S., Casati, G., Merlini, D. (eds.) Stochastic Processes in Classical and Quantum Systems. Lecture Notes in Physics, vol. 262. Springer, Berlin (1986)

    Google Scholar 

  • \(\ddagger \ddagger \)Nelson, E.: The mystery of stochastic mechanics. manuscript of a talk delivered on 22 Nov 2005, http://www.math.princeton.edu/nelson/papers/talk.pdf (2005)

  • Nelson, E.: Review of stochastic mechanics. J. Phys. Conf. Ser. 361, 012011 (2012)

    Article  ADS  Google Scholar 

  • Nelson, E.: Stochastic mechanics of relativistic fields. J. Phys. Conf. Ser. 504, 012013 (2014)

    Google Scholar 

  • Nicholson, A.F.: On a theory due to I. Fenyes, Australian. J. Phys. 7, 14 (1954)

    MATH  MathSciNet  Google Scholar 

  • Novobátzky, K.: Das klassische modell der quantentheorie. Ann. d. Phys. 444, 406 (1951)

    Article  ADS  Google Scholar 

  • Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, New Jersey (1994)

    MATH  Google Scholar 

  • Omnès, R.: Understanding Quantum Mechanics. Princeton University Press, New Jersey (1999a)

    MATH  Google Scholar 

  • Omnès, R.: Quantum Philosophy. Princeton University Press, New Jersey (1999b)

    Google Scholar 

  • Petroni, N.C.: Stochastic mechanics and quantum interference. Phys. Lett. A 141, 370 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  • Petroni, N.C., Morato, L.: Entangled states in stochastic mechanics. J. Physica A Math. Gen. 33, 5833 (2000)

    Google Scholar 

  • Prugovečki, E.: Stochastic Quantum Mechanics and Quantum Spacetime. Reidel, Dordrecht (1984)

    Book  MATH  Google Scholar 

  • Prugovečki, E.: Principles of Quantum General Relativity. World Scientific, Singapore (1995). (The main results are summarized in the paper Quantum Geometry and Gravity, in Quantum Gravity: International School of Cosmology and Gravitation, XIV Course in Erice 1995, P. G. Bergmann, V. de Sabbata and H.-D. Treder, eds. (World Scientific, Singapore, 1996))

    Book  Google Scholar 

  • Ramanathan, R.: The Present Status of the Quantum Theory of Light. Kluwer, Dordrecht (1997)

    Google Scholar 

  • Risken, H.: The Fokker-Planck equation. Methods of Solution and Applications. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  • Santos, E.: Brownian motion and the Stochastic theory of quantum mechanics. In: Biel, J., Rae, J. (eds.) Irreversibility in the Many Body Problem, p. 457. Plenum Press, New York (1973)

    Google Scholar 

  • Santos, E.: On a heuristic point of view concerning the motion of matter: from random metric to Schrödinger equation. Phys. Lett. A 352, 49 (2006)

    Article  MATH  ADS  Google Scholar 

  • Schrödinger, E.: Sitzungsber. Preuss. Akad. Wissen. Berlin, Phys. Math. Klasse 144 (1931)

    Google Scholar 

  • Schrödinger, E.: Sur la théorie relativiste de l’électron et l’interpretation de la mécanique quantique. Ann. Inst. Henri Poincaré 2, 269 (1932)

    Google Scholar 

  • Skagerstam, B.S.: Stochastic mechanics and dissipative forces. J. Math. Phys. 18, 308 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  • Smolin, L.: Stochastic mechanics, hidden variables, and gravity. In: Penrose, R., Isham, C.J. (eds.) Quantum Concepts in Space and Time. Clarendon, Oxford (1986)

    Google Scholar 

  • Smolin, L.: Could quantum mechanics be an approximation to another theory? (2006), arXiv: quant-ph/0609109v1

  • \(\ddagger \ddagger \)Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures. Progr. Theor. Phys. 8, 143 (1952)

    Google Scholar 

  • Tiwari, S.C.: Derivation of the Hamiltonian form of the Klein-Gordon equation from Schrödinger-Furth quantum diffusion theory: Comments. Phys. Lett. A 133, 279 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  • ’t Hooft, G.: The mathematical basis for deterministic quantum mechanics. In: Nieuwenhuizen T.M. et al. (eds.) Beyond the Quantum. World Scientific, Singapore (2006), arXiv: quant-ph/0604008v2

  • Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. I. Phys. Lett. A 156, 5 (1991a)

    Article  MathSciNet  ADS  Google Scholar 

  • Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. II. Phys. Lett. A 158, 1 (1991b)

    Article  MathSciNet  ADS  Google Scholar 

  • Vasudevan, R., Parthasarathy, K.V., Ramanathan, R.: Quantum Mechanics. A Stochastic Approach. Alpha Science International, Oxford (2008) (See also Stochastic Quantum Mechanics by R Vasudevan, in Stochastic processes and their applications, M. J. Beckmann, M. N. Gopalan and R. Subramanian, eds., Lecture Notes in Economics and Mathematical Systems 370 (Springer, Berlin 1991))

    Google Scholar 

  • \(\ddagger \)Wallstrom, T.C.: On the derivation of the Schrödinger equation from stochastic mechanics. Found. Phys. Lett. 2, 113 (1989)

    Google Scholar 

  • \(\ddagger \)Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49, 1613 (1994)

    Google Scholar 

  • Webb, G.F.: Event-based interpretation of Schrödinger’s equation for the two-slit experiment. Int. J. Theor. Phys. 50, 3571 (2011)

    Google Scholar 

  • Wick, D.: The Infamous Boundary. Copernicus, Springer, New York (1995)

    Google Scholar 

  • Wind-Willassen, O., Moláček, J., Harris, D.M., Bush, J.W.: Exotic states of bouncing and walking droplets. Phys. Fluids 25, 082002 (2013)

    Article  ADS  Google Scholar 

  • Yasue, K.: Quantum mechanics and stochastic control theory. J. Math. Phys. 22, 1010 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  • Zambrini, J.-C.: Stochastic mechanics according to E. Schrödinger. Phys. Rev. A 33, 1532 (1986)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Cetto .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Peña, L., Cetto, A.M., Valdés Hernández, A. (2015). The Phenomenological Stochastic Approach: A Short Route to Quantum Mechanics. In: The Emerging Quantum. Springer, Cham. https://doi.org/10.1007/978-3-319-07893-9_2

Download citation

Publish with us

Policies and ethics