Skip to main content

Quantum Mechanics: Some Answers

  • Chapter
  • First Online:
The Emerging Quantum

Abstract

We are near the end of our journey—though the theory is still far from the finish line, as is only the case with any scientific theory. The time has come, therefore, to recapitulate; recapture the most relevant points of the material presented in previous chapters, summarize some of the answers afforded by present stochastic electrodynamics to the questions posed at the beginning, and put on the table some of the many questions that remain to be explored. The chapter starts therefore with a summary of the most relevant results presented in the body of the book, stressing the genetic power of the zero-point field, on the basis of which the quantum scheme of matter in contact with the radiation field is constructed. Some particular features of quantum mechanics are discussed from this synoptic perspective. A condensed, itemized repertory of the answers offered by present stochastic electrodynamics to the conceptual problems of quantum theory is then provided, followed by a short critical review of the fussy definitions and conceptions of the modern photon. The chapter concludes with some comments on the limitations of the theory here discussed and possibilities for future developments and extensions.

Nothing in Nature is random.... A thing appears random only through the incompleteness of our knowledge.

Spinoza (2005)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Something similar happens with the photoelectric effect.Photoelectric effect This just was the example that Einstein 1905 used to argue in favor of the quantun of radiation. But it is a matter of fact that the cause of this effect can be attributed to the quantization of matter (see e.g. Schiff 1955,Schiff, L. I. Chap. X; Lamb and Scully 1969 Scully, M. O.; Mandel 1976).

  2. 2.

    We have in mind true probabilities. Negative ‘probabilities’ are consubstantial to the technique of the so-called weak measurementsMeasurement, i.e., non-projective measurements (Aharonov et al. 1988).

  3. 3.

    There are other cases in theoretical physics where approximations transform an otherwise causal theory into one that violates causalityCausality. Perhaps one of the best known examples is the Abraham-Lorentz equationAbraham-Lorentz!equation of motion. This equation is dCommutator!derivederived from a perfectly causal combination of Maxwell’s theory and classical mechanics. The end result, the Abraham-Lorentz equation, can however give rise to noncausal phenomena as preacceleration,Preacceleration the anticipated response to a future force [see e.g. Eq. (4.42)]. Again in this case, the root of such noncausal behavior is to be found in the approximations leading from the original causal full description to the final simplified (and noncausal)Evolution!noncausal one. Approximate physical theories are not bound to satisfy the same rigorous requirements that fundamental theories are supposed to fulfil; this is particularly true in what refers to consistency with first principles.

  4. 4.

    The contributions to the cited supplement to Optics & Photonic News are collected in Roychoudhuri and Roy (2003). The book Roychoudhuri et al. (2008)Creath, K. Roychoudhuri, Ch. and the proceedings of subsequent SPIE meetings under the same title "The Nature of Light: What are Photons?"contains an ample collection of papers on the nature of the photon, showing the broad diversity of views and deep contradictions still existing on this matter.

  5. 5.

    Newton and Wigner showed that it is not possible to define any position operator for a massless free particle with a nonzero spin, in sharp contrast to the case of massive particles, which can be localized. This is clearly in contradiction to the almost familiar notion of ‘position of a photon’, as one basic ingredient of the intended theoretical description.

  6. 6.

    Einstein’s photon of (1909) is defined by \(E=cp=\hbar \omega .\) It was in 1916 that he added a well-defined direction to the photon, transforming it into a ‘needle of radiation’.Photon!needle of radiation On the other hand, Wigner’s photon is its helicity, which is a Lorentz-invariantSpectrum, Lorentz-invariant concept coming from a subgroup of the Lorentz group for massless particles.

  7. 7.

    The coexistence of both aspects in quantum behavior has meanwhile become an experimentally verified fact; see Aldemade et al. (1966)Van der Veer, J. H. C., Kattke and Ziel (1970)Van der Ziel, A. Kattke, G. W.. For more recent work on ComplementaritycomplementarityEnglert, B.-G. see e.g. Jaeger et al. (1995)Jaeger, G., Englert (1996),Bergou, J. A. Engert and Bergou (2000), Liu et al. (2009) and Liu, N.-L. Flores, E. V. De Tata Flores and de Tata (2010).

References

  • Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  • Aldemade, C.Th.J., Bolwijn, P.T., van der Veer, J.H.C.: Single-beam measurement of Bose-Einstein fluctuations in a natural Gaussian radiation field. Phys. Lett. 22, 70 (1966)

    Google Scholar 

  • Bergia, S.: I Fondamenti della Meccanica Quantistica. In: Cattaneo, G., Rossi, A. (eds.) Analisi Storica e Problemi Aperti. EditEl, Commenda di Rende, Cosenza (1991)

    Google Scholar 

  • Bergia, S., Cannata, F., Pasini, A.: On the possibility of interpreting quantum mechanics in terms of stochastic metric fluctuations. Phys. Lett. A 137, 21 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  • Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs (1951)

    Google Scholar 

  • Carlton, P.: Stochastic space-time and quantum theory. Phys. Rev. D 13, 3183 (1976)

    Article  MathSciNet  Google Scholar 

  • **de la Peña, L., Cetto, A.M.: The Quantum Dice. An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996) (Referred to in this book as The Dice)

    Google Scholar 

  • Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunckt. Ann. Phys. 17, 132 (1905). English translation in The Collected Works of Albert Einstein. Princeton University Press, (1989)

    Google Scholar 

  • Einstein, A.: Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. Zeit. Phys. 10, 817 (1909). English translation in The Collected Works of Albert Einstein, vol. 2 (Princeton University Press, 1989), 379

    Google Scholar 

  • Einstein, A.: Über den Äther. Schweiz. Naturforsch. Gesells. Verh. 105, 85 (1924)

    Google Scholar 

  • Einstein, A.: In: Spiziale, P. (ed.) Albert Einstein, Correspondence avec Michele Besso 1903–1955. Hermann, Paris (1951)

    Google Scholar 

  • Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154 (1996)

    Article  ADS  Google Scholar 

  • Engert, B.-G., Bergou, J.A.: Quantitative quantum erasure. Opt. Commun. 179, 337 (2000)

    Article  ADS  Google Scholar 

  • Flores, E.V., de Tata, J.M.: Complementarity paradox solved: surprising consequences. Found. Phys. 40, 1731 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Gasperini, M.: Elements of String Cosmology. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  • Giovannini, M.: A Primer On The Physics Of The Cosmic Microwave Background. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  • Jaeger, G., Shimony, A., Vaidman, L.: Two interferometric complementarities. Phys. Rev. A 51, 54 (1995)

    Article  ADS  Google Scholar 

  • Jammer, M.: The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York (1966)

    Google Scholar 

  • Kattke, G.W., van der Ziel, A.: Verification of Einstein’s formula for fluctuations in thermal equilibrium. Physica 49, 461 (1970)

    Article  ADS  Google Scholar 

  • Kuhn, T.S.: Black-Body Theory and the Quantum Discontinuity 1894–1912. Clarendon, Oxford (1978)

    Google Scholar 

  • Lamb, W.E., Scully, M.O.: The photoelectric effect without photons. In: Polarisation, Matière et Rayonnement. Presses Universitaires de France (1969)

    Google Scholar 

  • Liu, N.-L., Li, L., Yu, S., Chen, Z.-B.: Duality relation and joint measurement in a Mach-Zehnder interferometer. Phys. Rev. A 79, 052108 (2009)

    Article  ADS  Google Scholar 

  • Mandel, L.: II The case for and against semiclassical radiation theory. In: Wolf, E. (ed.) Progress in Optics XIII. North-Holland, Amsterdam (1976)

    Google Scholar 

  • Muthukrishan, A., Scully, M.O., Zubairy, M.S.: The photon wave function. In: Roychoudhuri, Ch., Kracklauer, A.F., Creath, K. (eds.): The Nature of Light. What is a Photon? CRC Press, NY (2008)

    Google Scholar 

  • Namsrai, K.: Nonlocal Quantum Field Theory and Stochastic Quantum Mechanics. Reidel, Dordrecht (1986)

    Book  MATH  Google Scholar 

  • Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21, 400 (1949)

    Article  MATH  ADS  Google Scholar 

  • Planck, M.: Über die Begründung das Gesetzes der schwarzen Strahlung. Ann. Phys. 37, 642 (1912)

    Article  MathSciNet  Google Scholar 

  • Petroni, N.C., Vigier, J.-P.: Random motions at the velocity of light and relativistic quantum mechanics. J. Phys. A 17, 599 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  • Raymer, M.G., Srinivasan, K.: Manipulating the color and shape of single photons. Phys. Today 65, 32 (2012)

    Article  Google Scholar 

  • Roy, S.: Stochastic geometry and origin of quantum potential. Phys. Lett. A 115, 256 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  • Roy, S.: Random zero-point field and quantum correction to the metric. Acta Appl. Math. 26, 209 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Roychoudhuri, Ch., Kracklauer, A.F., Creath, K. (eds.): The Nature of Light. What is a Photon? CRC Press, New York (2008)

    Google Scholar 

  • Roychoudhuri, Ch., Roy, R.: Opt. Photonics News 14, 10 (2003)

    Google Scholar 

  • Santos, E.: On a heuristic point of view concerning the motion of matter: from random metric to Schrödinger equation. Phys. Lett. A 352, 49 (2006)

    Article  MATH  ADS  Google Scholar 

  • Schiff, L.: Quantum Mechanics. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  • Sorkin, R.D.: Quantum Mechanics as Quantum Measure Theory. arXiv:gr-qc/9401003 (1994)

  • Spinoza, B.: Ethics (1677). Penguin Classics, London (2005)

    Google Scholar 

  • Vasudevan, R., Parthasarathy, K.V., Ramanathan, R.: Quantum Mechanics. A Stochastic Approach. Alpha Science International, Oxford (2008)

    Google Scholar 

  • Vigier, J.-P.: Non-locality, causality and aether in quantum mechanics. Astron. Nachr. 303, 55 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  • Zajonc, A.: Light reconsidered. In: Roychoudhuri and Roy 2003, vol. 3. (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Cetto .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Peña, L., Cetto, A.M., Valdés Hernández, A. (2015). Quantum Mechanics: Some Answers. In: The Emerging Quantum. Springer, Cham. https://doi.org/10.1007/978-3-319-07893-9_10

Download citation

Publish with us

Policies and ethics