Skip to main content

The Impact of Volatility Treatment on the Radiative Effect of Biogenic SOA

  • Chapter
  • First Online:
  • 499 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The multi-step oxidation of BVOCs yields products with lower volatility, which allows their partitioning to the particle phase and the formation of SOA. The manner in which this SOA adds to the existing aerosol distribution will influence its impact on the number, size and composition of particles in the atmosphere; in particular, the number of particles that are able to act as CCN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams PJ, Seinfeld JH (2002) Predicting global aerosol size distributions in general circulation models. J Geophys Res Atmos, 107(D19):AAC 4-1–AAC 4-23

    Google Scholar 

  2. Chung SH, Seinfeld JH (2002) Global distribution and climate forcing of carbonaceous aerosols. J Geophys Res 107(D19):4407

    Article  Google Scholar 

  3. D’Andrea SD et al (2013) Understanding and constraining global secondary organic aerosol amount and size-resolved condensational behavior. Atmos Chem Phys 13:11519–11534

    Article  Google Scholar 

  4. Donahue NM et al (2011) Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles. Geophys Res Lett 38(16):L16801

    Article  Google Scholar 

  5. Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q J Roy Meteorol Soc 122(531):689–719

    Article  Google Scholar 

  6. Guenther A et al (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6(11):3181–3210

    Article  Google Scholar 

  7. Guenther AB et al (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5(6):1471–1492

    Article  Google Scholar 

  8. Heald CL et al (2008) Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J Geophys Res 113(D5):D05211

    Google Scholar 

  9. Jimenez JL et al (2009) Evolution of organic aerosols in the atmosphere. Science 326(5959):1525–1529

    Article  Google Scholar 

  10. Makkonen R et al (2009) Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model. Atmos Chem Phys 9(5):1747–1766

    Article  Google Scholar 

  11. Nenes A, Seinfeld JH (2003) Parameterization of cloud droplet formation in global climate models. J Geophys Res 108(D14):4415

    Article  Google Scholar 

  12. O’Donnell D et al (2011) Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM. Atmos Chem Phys 11(16):8635–8659

    Article  Google Scholar 

  13. Odum JR et al (1996) Gas/particle partitioning and secondary organic aerosol yields. Environ Sci Technol 30(8):2580–2585

    Article  Google Scholar 

  14. Pankow JF (1994) An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos Environ 28(2):189–193

    Article  Google Scholar 

  15. Petters MD et al (2006) Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophys Res Lett 33(24):L24806

    Article  Google Scholar 

  16. Pierce JR et al (2013) Weak global sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee + SO2 chemistry. Atmos Chem Phys 13(6):3163–3176

    Article  Google Scholar 

  17. Pierce JR et al (2012) Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley. Atmos Chem Phys 12(7):3147–3163

    Article  Google Scholar 

  18. Pierce JR et al (2011) Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmos Chem Phys 11(17):9019–9036

    Article  Google Scholar 

  19. Pye HOT, Seinfeld JH (2010) A global perspective on aerosol from low-volatility organic compounds. Atmos Chem Phys 10(9):4377–4401

    Article  Google Scholar 

  20. Rap A et al (2013) Natural aerosol direct and indirect radiative effects. Geophys Res Lett 40:3297–3301

    Article  Google Scholar 

  21. Riipinen I et al (2011) Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos Chem Phys 11(8):3865–3878

    Article  Google Scholar 

  22. Riipinen I et al (2012) The contribution of organics to atmospheric nanoparticle growth. Nat Geosci 5(7):453–458

    Article  Google Scholar 

  23. Sakulyanontvittaya T et al (2008) Monoterpene and sesquiterpene emission estimates for the United States. Environ Sci Technol 42(5):1623–1629

    Article  Google Scholar 

  24. Snow-Kropla EJ et al (2011) Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties. Atmos Chem Phys 11(8):4001–4013

    Article  Google Scholar 

  25. Spracklen DV et al (2006) The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmos Chem Phys 6(12):5631–5648

    Article  Google Scholar 

  26. Tsigaridis K et al (2005) Naturally driven variability in the global secondary organic aerosol over a decade. Atmos Chem Phys 5(7):1891–1904

    Article  Google Scholar 

  27. Vehkamäki H et al (2002) An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions. J Geophys Res Atmos 107(D22):4622

    Article  Google Scholar 

  28. Yu F (2011) A secondary organic aerosol formation model considering successive oxidation aging and kinetic condensation of organic compounds: global scale implications. Atmos Chem Phys 11(3):1083–1099

    Article  Google Scholar 

  29. Zhang X et al (2012) Diffusion-limited versus quasi-equilibrium aerosol growth. Aerosol Sci Technol 46(8):874–885

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Scott .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scott, C.E. (2014). The Impact of Volatility Treatment on the Radiative Effect of Biogenic SOA. In: The Biogeochemical Impacts of Forests and the Implications for Climate Change Mitigation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07851-9_5

Download citation

Publish with us

Policies and ethics