Skip to main content

The Impact of Biogenic SOA on Particle and Cloud Condensation Nuclei Concentration

  • Chapter
  • First Online:
The Biogeochemical Impacts of Forests and the Implications for Climate Change Mitigation

Part of the book series: Springer Theses ((Springer Theses))

  • 521 Accesses

Abstract

As described in Chap. 1, the presence of biogenic SOA affects the number and size of particles in the atmosphere. Organic oxidation products may condense onto existing particles and aid their growth to larger sizes (e.g., [30]), enhance particle solubility [27], and contribute to new particle formation (e.g., [25]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreae MO et al (2004) Smoking rain clouds over the amazon. Science 303(5662):1337–1342

    Article  Google Scholar 

  2. Delene DJ, Deshler T (2001) Vertical profiles of cloud condensation nuclei above Wyoming. J Geophys Res Atmos 106(D12):12579–12588

    Article  Google Scholar 

  3. Dentener F et al (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6(12):4321–4344

    Article  Google Scholar 

  4. Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the earth’s atmosphere. Environ Sci Technol 41(5):1514–1521

    Article  Google Scholar 

  5. Griffin RJ et al (1999) Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophys Res Lett 26(17):2721–2724

    Article  Google Scholar 

  6. Guenther A et al (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100(D5):8873–8892

    Article  Google Scholar 

  7. Hatakka J et al (2003) Overview of the atmospheric research activities and results at Pallas GAW station. Boreal Environ Res 8:365–383

    Google Scholar 

  8. Heald CL et al (2010) Satellite observations cap the atmospheric organic aerosol budget. Geophys Res Lett 37(24):L24808

    Article  Google Scholar 

  9. Heald CL et al (2011) Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmos Chem Phys 11(24):12673–12696

    Article  Google Scholar 

  10. Hudson JG, Frisbie PR (1991) Surface cloud condensation nuclei and condensation nuclei measurements at Reno, Nevada. Atmos Environ Part A Gen Top 25(10):2285–2299

    Article  Google Scholar 

  11. Kanakidou M et al (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5(4):1053–1123

    Article  Google Scholar 

  12. Kanawade VP et al (2011) Isoprene suppression of new particle formation in a mixed deciduous forest. Atmos Chem Phys 11(12):6013–6027

    Article  Google Scholar 

  13. Kiendler-Scharr A et al (2009) New particle formation in forests inhibited by isoprene emissions. Nature 461(7262):381–384

    Article  Google Scholar 

  14. Kirkby J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476(7361):429–433

    Article  Google Scholar 

  15. Komppula M et al (2003) Observations of new particle formation and size distributions at two different heights and surroundings in subarctic area in northern Finland. J Geophys Res Atmos 108(D9):4295

    Article  Google Scholar 

  16. Kroll JH et al (2005) Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys Res Lett 32(18):L18808

    Article  Google Scholar 

  17. Kroll JH et al (2006) Secondary organic aerosol formation from isoprene photooxidation. Environ Sci Technol 40(6):1869--1877

    Article  Google Scholar 

  18. Kulmala M et al (1998) Parameterisations for sulphuric acid/water nucleation rates. J Geophys Res Atmos 103(D7):8301–8307

    Article  Google Scholar 

  19. Kulmala M et al (1998) Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus B 50(5):449–462

    Article  Google Scholar 

  20. Kulmala M et al (2001) Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR). Tellus B 53(4):324–343

    Article  Google Scholar 

  21. Kulmala M et al (2006) Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmos Chem Phys 6:787–793

    Article  Google Scholar 

  22. Lee LA et al (2013) The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmos Chem Phys 13:8879–8914

    Article  Google Scholar 

  23. Mann GW et al (2012) Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model. Atmos Chem Phys 12(10):4449–4476

    Article  Google Scholar 

  24. Merikanto J et al (2009) Impact of nucleation on global CCN. Atmos Chem Phys 9:8601–8616

    Article  Google Scholar 

  25. Metzger A et al (2010) Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc Natl Acad Sci 107(15):6646–6651

    Article  Google Scholar 

  26. Paasonen P et al (2010) On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation. Atmos Chem Phys 10(22):11223–11242

    Article  Google Scholar 

  27. Petters MD et al (2006) Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophys Res Lett 33(24):L24806

    Article  Google Scholar 

  28. Reddington CL et al (2011) Primary versus secondary contributions to particle number concentrations in the European boundary layer. Atmos Chem Phys 11(23):12007–12036

    Article  Google Scholar 

  29. Riccobono F et al (2014) Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science 344(6185):717–721

    Article  Google Scholar 

  30. Riipinen I et al (2011) Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos Chem Phys 11(8):3865–3878

    Article  Google Scholar 

  31. Roberts GC et al (2001) Cloud condensation nuclei in the Amazon Basin: “marine” conditions over a continent? Geophys Res Lett 28(14):2807–2810

    Article  Google Scholar 

  32. Spracklen DV et al (2005) A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties. Atmos Chem Phys 5(12):3233–3250

    Article  Google Scholar 

  33. Spracklen DV (2005) Development and application of a global model of aerosol processes, University of Leeds. UK, PhD

    Google Scholar 

  34. Spracklen DV et al (2006) The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmos Chem Phys 6(12):5631–5648

    Article  Google Scholar 

  35. Spracklen DV et al (2008) Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys Res Lett 35(6):L06808

    Article  Google Scholar 

  36. Spracklen DV et al (2010) Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmos Chem Phys 10(10):4775–4793

    Article  Google Scholar 

  37. Spracklen DV et al (2011) Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos Chem Phys 11(23):12109–12136

    Article  Google Scholar 

  38. Spracklen DV et al (2011) Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos Chem Phys 11(17):9067–9087

    Article  Google Scholar 

  39. Stier P et al (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5(4):1125–1156

    Article  Google Scholar 

  40. Tunved P et al (2004) An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten. Atmos Chem Phys 4(11/12):2581–2592

    Article  Google Scholar 

  41. Tunved P et al (2004) A pseudo-Lagrangian model study of the size distribution properties over Scandinavia: transport from Aspvreten to Värriö. Atmos. Chem. Phys. Discuss. 4(6):7757–7794

    Article  Google Scholar 

  42. Vestin A et al (2007) Cloud-nucleating properties of the Amazonian biomass burning aerosol: cloud condensation nuclei measurements and modeling. J Geophys Res Atmos 112(D14):D14201

    Article  Google Scholar 

  43. Williams E et al (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res Atmos 107(D20):8082

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Scott .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scott, C.E. (2014). The Impact of Biogenic SOA on Particle and Cloud Condensation Nuclei Concentration. In: The Biogeochemical Impacts of Forests and the Implications for Climate Change Mitigation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07851-9_3

Download citation

Publish with us

Policies and ethics