Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 521 Accesses

Abstract

This chapter describes the global aerosol microphysics model (GLOMAP-mode) used in Chaps. 36. An offline radiative transfer model and land-surface model are introduced and described in Chaps. 4 and 6, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres RJ, Kasgnoc AD (1998) A time-averaged inventory of subaerial volcanic sulfur emissions. J Geophys Res 103(D19):25251–25261

    Article  Google Scholar 

  2. Arnold SR et al (2005) A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis. J Geophys Res 110(D22):D22305

    Article  Google Scholar 

  3. Atkinson R et al (2006) Evaluated kinetic and photochemical data for atmospheric chemistry: volume II—gas phase reactions of organic species. Atmos Chem Phys 6(11):3625–4055

    Article  Google Scholar 

  4. Atkinson R et al (1989) Evaluated kinetic and photochemical data for atmospheric chemistry: supplement III. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J Phys Chem Ref Data 18:881–1097

    Article  Google Scholar 

  5. Ball SM et al (1999) Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors. J Geophys Res Atmos 104(D19):23709–23718

    Article  Google Scholar 

  6. Bates TS et al (1992) Sulfur emissions to the atmosphere from natural sourees. J Atmos Chem 14(1–4):315–337

    Article  Google Scholar 

  7. Bellouin N et al (2013) Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmos Chem Phys 13(6):3027–3044

    Article  Google Scholar 

  8. Bond TC et al (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109(D14):D14203

    Article  Google Scholar 

  9. Boy M et al (2006) MALTE—model to predict new aerosol formation in the lower troposphere. Atmos Chem Phys 6(12):4499–4517

    Article  Google Scholar 

  10. Browse J et al (2012) The scavenging processes controlling the seasonal cycle in arctic sulphate and black carbon aerosol. Atmos Chem Phys 12(15):6775–6798

    Article  Google Scholar 

  11. Chang RYW et al (2010) The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation. Atmos Chem Phys 10(11):5047–5064

    Article  Google Scholar 

  12. Chipperfield MP (2006) New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments. Q J R Meteorol Soc 132(617):1179–1203

    Article  Google Scholar 

  13. Clarke AD et al (1998) Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources. Science 282(5386):89–92

    Article  Google Scholar 

  14. Clarke AD et al (1999) Nucleation in the equatorial free troposphere: favorable environments during PEM-Tropics. J Geophys Res Atmos 104(D5):5735–5744

    Article  Google Scholar 

  15. Cofala J et al (2005) Scenarios of world anthropogenic emissions of SO2, NOx and CO up to 2030. In Internal report of the transboundary air pollution programme, International Institute for Applied Systems Analysis. Laxenburg, Austria

    Google Scholar 

  16. Dentener F et al (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6(12):4321–4344

    Article  Google Scholar 

  17. Dunne EM et al (2012) No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols. Atmos Chem Phys 12(23):11573–11587

    Article  Google Scholar 

  18. Dusek U et al (2010) Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophys Res Lett 37(3):L03804

    Google Scholar 

  19. Easter RC, Hales JM (1983) Interpretation of the OSCAR data for reactive gas scavenging. In: Precipitation scavenging, dry deposition and resuspension. Elsevier, New York, pp 649–662

    Google Scholar 

  20. Elleman RA, Covert DS (2009) Aerosol size distribution modeling with the community multiscale air quality modeling system in the Pacific Northwest: 2. Parameterizations for ternary nucleation and nucleation mode processes. J Geophys Res Atmos 114(D11):D11207

    Article  Google Scholar 

  21. Engelhart GJ et al (2008) CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmos Chem Phys 8(14):3937–3949

    Article  Google Scholar 

  22. Engelhart GJ et al (2011) Cloud condensation nuclei activity of isoprene secondary organic aerosol. J Geophys Res 116(D2):D02207

    Google Scholar 

  23. Fuchs NA, Sutugin AG (1971) Highly dispersed aerosols. In: Topics in current aerosol research. Pergamin, New York, pp 1–60

    Book  Google Scholar 

  24. Fuller EN et al (1966) New method for prediction of binary gas-phase diffusion coefficients. Ind Eng Chem 58(5):18–27

    Article  Google Scholar 

  25. Gong SL (2003) A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem Cycles 17(4):1097

    Google Scholar 

  26. Guenther A et al (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100(D5):8873–8892

    Article  Google Scholar 

  27. Guenther AB et al (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5(6):1471–1492

    Article  Google Scholar 

  28. Gunthe SS et al (2009) Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos Chem Phys 9(19):7551–7575

    Article  Google Scholar 

  29. Hakola H et al (2012) In situ measurements of volatile organic compounds in a boreal forest. Atmos Chem Phys 12(23):11665–11678

    Article  Google Scholar 

  30. Halmer MM et al (2002) The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J Volcanol Geoth Res 115(3–4):511–528

    Article  Google Scholar 

  31. Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6(10):1825–1842

    Article  Google Scholar 

  32. Jacobson M (2005) Fundamentals of atmospheric modelling. Cambridge University Press, New York

    Google Scholar 

  33. Jones A et al (2001) Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J Geophys Res Atmos 106(D17):20293–20310

    Article  Google Scholar 

  34. Kerminen V-M, Kulmala M (2002) Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. J Aerosol Sci 33(4):609–622

    Article  Google Scholar 

  35. Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J Geophys Res Atmos 105(D22):26793–26808

    Article  Google Scholar 

  36. Khalil MAK, Rasmussen RA (1984) Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the earth’s atmosphere. Atmos Environ (1967), 18(9):1805–1813

    Google Scholar 

  37. King SM et al (2010) Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene. Atmos Chem Phys 10(8):3953–3964

    Article  Google Scholar 

  38. Kirkby J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476(7361):429–433

    Article  Google Scholar 

  39. Köhler H (1936) The nucleus in and the growth of hygroscopic droplets. Trans Faraday Soc 32:1152–1161

    Article  Google Scholar 

  40. Korhonen H et al (2010) Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport. Atmos Chem Phys 10(9):4133–4143

    Article  Google Scholar 

  41. Kroll JH et al (2005) Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys Res Lett 32(18):L18808

    Google Scholar 

  42. Kroll JH et al (2006) Secondary organic aerosol formation from isoprene photooxidation. Environ Sci Technol 40(6):1869–1877

    Article  Google Scholar 

  43. Kulmala M et al (1998) Parameterisations for sulphuric acid/water nucleation rates. J Geophys Res Atmos 103(D7):8301–8307

    Article  Google Scholar 

  44. Kulmala M et al (2006) Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmos Chem Phys 6:787–793

    Article  Google Scholar 

  45. Kulmala M et al (2001) On the formation, growth and composition of nucleation mode particles. Tellus B 53(4):479–490

    Article  Google Scholar 

  46. Kulmala M et al (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35(2):143–176

    Article  Google Scholar 

  47. Lappalainen HK et al (2009) Day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy and their relation to environmental and biological factors. Atmos Chem Phys 9(15):5447–5459

    Article  Google Scholar 

  48. Lee S-H et al (2003) Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301(5641):1886–1889

    Article  Google Scholar 

  49. Lehtinen KEJ et al (2003) On the concept of condensation sink diameter. Boreal Environ Res 8(4):405–411

    Google Scholar 

  50. Lovejoy ER et al (2004) Atmospheric ion-induced nucleation of sulfuric acid and water. J Geophys Res Atmos 109(D8):D08204

    Article  Google Scholar 

  51. Makkonen R et al (2009) Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model. Atmos Chem Phys 9(5):1747–1766

    Article  Google Scholar 

  52. Mann GW et al (2012) Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model. Atmos Chem Phys 12(10):4449–4476

    Article  Google Scholar 

  53. Mann GW et al (2010) Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev. 3(2):519–551

    Article  Google Scholar 

  54. Merikanto J et al (2007) New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions. J Geophys Res Atmos 112(D15):D15207

    Article  Google Scholar 

  55. Merikanto J et al (2009) Impact of nucleation on global CCN. Atmos Chem Phys 9:8601–8616

    Article  Google Scholar 

  56. Modgil MS et al (2005) A parameterization of ion-induced nucleation of sulphuric acid and water for atmospheric conditions. J Geophys Res Atmos 110(D19):D19205

    Article  Google Scholar 

  57. Napari I et al (2002) An improved model for ternary nucleation of sulfuric acid–ammonia–water. J Chem Phys 116(10):4221–4227

    Article  Google Scholar 

  58. Olson J (1992) World ecosystems (W E1.4): Digital raster data on a 10 min geographic 1,080 × 2,160 grid. NOAA National Geophysical Data Center, Boulder

    Google Scholar 

  59. Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7(8):1961–1971

    Article  Google Scholar 

  60. Pham M et al (1995) A three-dimensional study of the tropospheric sulfur cycle. J Geophys Res Atmos 100(D12):26061–26092

    Article  Google Scholar 

  61. Pierce JR et al (2013) Weak global sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee + SO2 chemistry. Atmos Chem Phys 13(6):3163–3176

    Article  Google Scholar 

  62. Prather MJ (1986) Numerical advection by conservation of second-order moments. J Geophys Res Atmos 91(D6):6671–6681

    Article  Google Scholar 

  63. Pringle KJ (2006) Aerosol-cloud interactions in a global model of aerosol microphysics, Ph.D. thesis, University of Leeds

    Google Scholar 

  64. Reddington CL et al (2011) Primary versus secondary contributions to particle number concentrations in the European boundary layer. Atmos Chem Phys 11(23):12007–12036

    Article  Google Scholar 

  65. Riipinen I et al (2007) Connections between atmospheric sulphuric acid and new particle formation during QUEST III-IV campaigns in Heidelberg and Hyytiälä. Atmos Chem Phys 7(8):1899–1914

    Article  Google Scholar 

  66. Rossow WB, Schiffer RA (1999) Advances in Understanding Clouds from ISCCP. B Am Meteorol Soc 80(11):2261–2287

    Article  Google Scholar 

  67. Schmidt A et al (2012) Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate. Atmos Chem Phys 12(16):7321–7339

    Article  Google Scholar 

  68. Seinfeld JH, Pandis SN (2006a) Chemistry of the atmospheric aqueous phase. In: Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, pp 284–349

    Google Scholar 

  69. Seinfeld JH, Pandis SN (2006b). Cloud physics. In: Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, pp 761–822

    Google Scholar 

  70. Sekhon RS, Srivastava RC (1971) Doppler radar observations of drop-size distributions in a thunderstorm. J Atmos Sci 28(6):983–994

    Article  Google Scholar 

  71. Sihto S-L et al (2006) Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms. Atmos Chem Phys 6:4079–4091

    Article  Google Scholar 

  72. Slinn WGN (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ (1967), 16(7):1785–1794

    Google Scholar 

  73. Spracklen DV (2005) Development and application of a global model of aerosol processes, Ph.D. thesis, University of Leeds, UK

    Google Scholar 

  74. Spracklen DV et al (2008) Boreal forests, aerosols and the impacts on clouds and climate. Philos Trans R Soc A 366:4613–4626

    Article  Google Scholar 

  75. Spracklen DV et al (2008) Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys Res Lett 35(6):L06808

    Google Scholar 

  76. Spracklen DV et al (2006) The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmos Chem Phys 6(12):5631–5648

    Article  Google Scholar 

  77. Spracklen DV et al (2011) Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos Chem Phys 11(17):9067–9087

    Article  Google Scholar 

  78. Spracklen DV et al (2011) Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos Chem Phys 11(23):12109–12136

    Article  Google Scholar 

  79. Spracklen DV et al (2005) A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties. Atmos Chem Phys 5(8):2227–2252

    Article  Google Scholar 

  80. Spracklen DV et al (2005) A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties. Atmos Chem Phys 5(12):3233–3250

    Article  Google Scholar 

  81. Stier P et al (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5(4):1125–1156

    Article  Google Scholar 

  82. Stokes RH, Robinson RA (1966) Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. J Phys Chem 70(7):2126–2131

    Article  Google Scholar 

  83. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Article  Google Scholar 

  84. Tunved P et al (2004) A pseudo-Lagrangian model study of the size distribution properties over Scandinavia: transport from Aspvreten to Värriö. Atmos Chem Phys Discuss 4(6):7757–7794

    Article  Google Scholar 

  85. van der Werf GR et al (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303(5654):73–76

    Article  Google Scholar 

  86. Vehkamäki H et al (2002) An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions. J Geophys Res Atmos 107(D22):4622

    Article  Google Scholar 

  87. Vignati E et al (2004) M7: an efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J Geophys Res 109(D22):D22202

    Article  Google Scholar 

  88. Wang J et al (2008) Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect. Atmos Chem Phys 8(21):6325–6339

    Article  Google Scholar 

  89. Weber RJ et al (1996) Measured atmospheric new particle formation rates: implications for nucleation mechanisms. Chem Eng Commun 151(1):53–64

    Article  Google Scholar 

  90. Woodhouse MT et al (2010) Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide. Atmos Chem Phys 10(16):7545–7559

    Article  Google Scholar 

  91. Yu F, Turco RP (2001) From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation. J Geophys Res Atmos 106(D5):4797–4814

    Article  Google Scholar 

  92. Zadanovskii AB (1948) New methods for calculating solubilities of electrolytes in multicomponent systems. Zhurnal fizicheskoi khimii (Russ J Phys Chem) 22:1475–1485

    Google Scholar 

  93. Zhang L et al (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos Environ 35(3):549–560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Scott .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scott, C.E. (2014). Model Description. In: The Biogeochemical Impacts of Forests and the Implications for Climate Change Mitigation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07851-9_2

Download citation

Publish with us

Policies and ethics