Skip to main content

Introduction

  • Chapter
  • First Online:
  • 529 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Vegetation emits biogenic volatile organic compounds (BVOCs) into the atmosphere which, once oxidised, may partition into the particle-phase forming secondary organic aerosol (SOA). In this thesis, the climatic impacts of biogenic SOA are quantified, using a detailed global aerosol microphysics model, and the sensitivity of these radiative effects to the representation of various atmospheric processes is examined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amin HS et al (2013) Monoterpene emissions from bark beetle infested Engelmann spruce trees. Atmos Environ 72:130–133

    Google Scholar 

  2. Angelsen A, Wetrtz-Kanounnikoff S (2008) What are the key design issues for REDD and the criteria for assessing options? Moving Ahead with REDD. A. Angelsen, CIFOR, pp 11–22

    Google Scholar 

  3. Arey J et al (1995) Hydrocarbon emissions from natural vegetation in California’s South Coast Air Basin. Atmos Environ 29(21):2977–2988

    Google Scholar 

  4. Arneth A et al (2007) CO2 inhibition of global terrestrial isoprene emissions: potential implications for atmospheric chemistry. Geophys Res Lett 34(18):L18813

    Google Scholar 

  5. Arneth A et al (2008) Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos Chem Phys 8(16):4605–4620

    Google Scholar 

  6. Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nat Geosci 4(8):514–518

    Google Scholar 

  7. Aschmann SM et al (1998) Products of the gas phase reactions of the OH radical with α- and β-pinene in the presence of NO. J Geophys Res: Atmosph 103(D19):25553–25561

    Google Scholar 

  8. Atkinson R (1997) Gas-phase Tropospheric chemistry of volatile organic compounds: 1. Alkanes and Alkenes. J Phys Chem Ref Data 26:215–290

    Google Scholar 

  9. Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37(Supplement 2):197–219

    Google Scholar 

  10. Atkinson R et al (1984) Kinetics of the gas-phase reactions of nitrate radicals with a series of dialkenes, cycloalkenes, and monoterpenes at 295. ±1 K. Environ Sci Technol 18(5):370–375

    Google Scholar 

  11. Atkinson R et al (1990) Rate constants for the gas-phase reactions of O3 with a series of monoterpenes and related compounds at 296 ± 2 K. Int J Chem Kinet 22(8):871–887

    Google Scholar 

  12. Atkinson R et al (1986) Estimation of night-time N2O5 concentrations from ambient NO2 and NO3 radical concentrations and the role of N2O5 in night-time chemistry. Atmosph Environ 20(2):331–339

    Google Scholar 

  13. Bala G et al (2007) Combined climate and carbon-cycle effects of large-scale deforestation. PNAS 104(16):6550–6555

    Google Scholar 

  14. Barnes I et al (1990) Kinetics and products of the reactions of nitrate radical with monoalkenes, dialkenes, and monoterpenes. J Phys Chem 94(6):2413–2419

    Google Scholar 

  15. Bellouin N et al (2005) Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 438(7071):1138–1141

    Google Scholar 

  16. Bellouin N et al (2008) Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J Geophys Res: Atmosph 113(D10):D10205

    Google Scholar 

  17. Bellouin N et al (2013) Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmos Chem Phys 13(6):3027–3044

    Google Scholar 

  18. Bellouin N et al (2013) Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos Chem Phys 13(4):2045–2062

    Google Scholar 

  19. Bellouin N et al (2011) Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res 116(D20):D20206

    Google Scholar 

  20. Berg AR et al (2013) The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America. Atmos Chem Phys 13(6):3149–3161

    Google Scholar 

  21. Bernard F et al (2012) Thresholds of secondary organic aerosol formation by ozonolysis of monoterpenes measured in a laminar flow aerosol reactor. J Aerosol Sci 43(1):14–30

    Google Scholar 

  22. Betts AK, Ball JH (1997) Albedo over the boreal forest. J Geophys Res: Atmosph 102(D24):28901–28909

    Google Scholar 

  23. Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408(6809):187–190

    Google Scholar 

  24. Betts RA et al (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric For Meteorol 142(2–4):216–233

    Google Scholar 

  25. Bonan GB (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Google Scholar 

  26. Bonan GB et al (1992) Effects of boreal forest vegetation on global climate. Nature 359(6397):716–718

    Google Scholar 

  27. Bounoua L et al (2002) Effects of land cover conversion on surface climate. Clim Change 52(1–2):29–64

    Google Scholar 

  28. Boy M et al (2003) Nucleation events in the continental boundary layer: long-term statistical analyses of aerosol relevant characteristics. J Geophys Res 108(D21):4667

    Google Scholar 

  29. Brown D et al (2008) How do we achieve REDD co-benefits and avoid doing harm? In: Angelsen A (ed) Moving ahead with REDD. CIFOR. pp 107–118

    Google Scholar 

  30. Burgess N et al (2002) The Uluguru Mountains of eastern Tanzania: the effect of forest loss on biodiversity. Oryx 36(02):140–152

    Google Scholar 

  31. Canadell J, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Google Scholar 

  32. Canadell JG et al (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci 104(47):18866–18870

    Google Scholar 

  33. Claeys M et al (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303(5661):1173–1176

    Google Scholar 

  34. Claussen M et al (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28(6):1011–1014

    Google Scholar 

  35. Corchnoy SB et al (1992) Hydrocarbon emissions from twelve urban shade trees of the Los Angeles, California, Air Basin. Atmosph Environ. Part B. Urban Atmosph 26(3):339–348

    Google Scholar 

  36. Criegee R (1975) Mechanism of ozonolysis. Angew Chem, Int Ed Engl 14(11):745–752

    Google Scholar 

  37. Davin EL, de Noblet-Ducoudré N (2010) Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J Clim 23(1):97–112

    Google Scholar 

  38. Dement WA et al (1975) Mechanism of monoterpene volatilization in Salvia mellifera. Phytochemistry 14(12):2555–2557

    Google Scholar 

  39. Denman KL et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D., Manninget M et al (eds.) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA

    Google Scholar 

  40. Ding X et al (2008) Spatial and seasonal trends in biogenic secondary organic aerosol tracers and water-soluble organic carbon in the Southeastern United States. Environ Sci Technol 42(14):5171–5176

    Google Scholar 

  41. Dixon RK et al (1994) Carbon pools and flux of global forest ecosystems. Science 263(5144):185–190

    Google Scholar 

  42. Donahue NM et al (1998) Direct observation of OH production from the ozonolysis of olefins. Geophys Res Lett 25(1):59–62

    Google Scholar 

  43. Donahue NM et al (2011) Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles. Geophys Res Lett 38(16):L16801

    Google Scholar 

  44. Dooley K et al (2008) Cutting Corners: World Bank’s forest and carbon fund fails forests and peoples, FERN / Forest Peoples Programme

    Google Scholar 

  45. Dudareva N et al (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440

    Google Scholar 

  46. Duplissy J et al (2008) Cloud forming potential of secondary organic aerosol under near atmospheric conditions. Geophys Res Lett 35(3):L03818

    Google Scholar 

  47. Dusek U et al (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312(5778):1375–1378

    Google Scholar 

  48. Edney EO et al (2005) Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmos Environ 39(29):5281–5289

    Google Scholar 

  49. Engelhart GJ et al (2008) CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmos Chem Phys 8(14):3937–3949

    Google Scholar 

  50. Engelhart GJ et al (2011) Cloud condensation nuclei activity of isoprene secondary organic aerosol. J Geophys Res 116(D2):D02207

    Google Scholar 

  51. Evans RC et al (1985) Interspecies variation in Terpenoid emissions from Engelmann and Sitka spruce seedlings. Forest Sci 31(1):132–142

    Google Scholar 

  52. Fan J et al (2006) Contribution of secondary condensable organics to new particle formation: a case study in Houston, Texas. Geophys Res Lett 33(15):L15802

    Google Scholar 

  53. Fang J-Y et al (1998) Forest biomass of China: an estimate based on the biomass-volume relationship. Ecol Appl 8(4):1084–1091

    Google Scholar 

  54. Fang J et al (2001) Changes in forest biomass carbon storage in china between 1949 and 1998. Science 292(5525):2320–2322

    Google Scholar 

  55. FAO (2010) Global forest resources assessment 2010. FAO Forestry Paper 163. Rome, United Nations

    Google Scholar 

  56. FAO (2012) State of the World’s Forests. Rome, United Nations

    Google Scholar 

  57. Fearnside PM (2005) Deforestation in Brazilian Amazonia: History, rates, and consequences. Conserv Biol 19(3):680–688

    Google Scholar 

  58. Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manninget M et al (eds.) Climate change 2007: the physical science basis. contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA

    Google Scholar 

  59. Friedlingstein P et al (2010) Update on CO2 emissions. Nat Geosci 3:811–812

    Google Scholar 

  60. Geron CD, Arnts RR (2010) Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana. Atmos Environ 44(34):4240–4251

    Google Scholar 

  61. Gibbard S et al (2005) Climate effects of global land cover change. Geophys Res Lett 32(23):L23705

    Google Scholar 

  62. Gibbs HK et al (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3(3):034001

    Google Scholar 

  63. Gibbs HK et al (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. In: Proceedings of the National Academy of Sciences

    Google Scholar 

  64. Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the Earth’s atmosphere. Environ Sci Technol 41(5):1514–1521

    Google Scholar 

  65. Goto D et al (2008) Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene. J Geophys Res 113(D7):D07205

    Google Scholar 

  66. Grainger A (1993) The causes of deforestation. In: Controlling tropical deforestation, Earthscan pp 49–68

    Google Scholar 

  67. Griffin RJ et al (1999) Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophys Res Lett 26(17):2721–2724

    Google Scholar 

  68. Grosjean D et al (1993) Atmospheric chemistry of isoprene and of its carbonyl products. Environ Sci Technol 27(5):830–840

    Google Scholar 

  69. Guenther A et al (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100(D5):8873–8892

    Google Scholar 

  70. Guenther A et al (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6(11):3181–3210

    Google Scholar 

  71. Guenther AB et al (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5(6):1471–1492

    Google Scholar 

  72. Guenther AB et al (1991) Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development. J Geophys Res: Atmosph 96(D6):10799–10808

    Google Scholar 

  73. Guenther AB et al (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res: Atmosph 98(D7):12609–12617

    Google Scholar 

  74. Gullison RE et al (2007) Tropical forests and climate policy. Science 316(5827):985–986

    Google Scholar 

  75. Gumpenberger M et al (2010) Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD. Environ Res Lett 5(1):014013

    Google Scholar 

  76. Haapanala S et al (2012) Is forest management a significant source of monoterpenes into the boreal atmosphere? Biogeosciences 9(4):1291–1300

    Google Scholar 

  77. Hakola H et al (1994) Product formation from the gas-phase reactions of OH radicals and O3 with a series of monoterpenes. J Atmos Chem 18(1):75–102

    Google Scholar 

  78. Hakola H et al (2012) In situ measurements of volatile organic compounds in a boreal forest. Atmos Chem Phys 12(23):11665–11678

    Google Scholar 

  79. Hakola H et al (2000) The ambient concentrations of biogenic hydrocarbons at a northern European, boreal site. Atmos Environ 34(29–30):4971–4982

    Google Scholar 

  80. Hallgren W et al (2013) Climate impacts of a large-scale biofuels expansion. Geophys Res Lett 40(8):1624–1630

    Google Scholar 

  81. Hallquist M et al (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9(14):5155–5236

    Google Scholar 

  82. Hansen J et al (1997) Radiative forcing and climate response. J Geophys Res 102

    Google Scholar 

  83. Hansen MC et al (2010) Quantification of global gross forest cover loss. Proc Natl Acad Sci 107(19):8650–8655

    Google Scholar 

  84. Harborne JB (1988) Introduction to ecological biochemistry. Academic Press, Boston

    Google Scholar 

  85. Hard TM et al (1986) Diurnal cycle of tropospheric OH. Nature 322(6080):617–620

    Google Scholar 

  86. Hatakeyama S et al (1989) Reactions of ozone with α-pinene and β-pinene in air: yields of gaseous and particulate products. J Geophys Res: Atmosph 94(D10):13013–13024

    Google Scholar 

  87. Hatakeyama S et al (1991) Reactions of OH with α-pinene and β-pinene in air: estimate of global CO production from the atmospheric oxidation of terpenes. J Geophys Res: Atmosph 96(D1):947–958

    Google Scholar 

  88. Heald CL et al (2011) Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmos Chem Phys 11(24):12673–12696

    Google Scholar 

  89. Heald CL et al (2010) Satellite observations cap the atmospheric organic aerosol budget. Geophys Res Lett 37(24):L24808

    Google Scholar 

  90. Hegg DA et al (1997) Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States. J Geophys Res 102(D21):25293–25303

    Google Scholar 

  91. Helmig D et al (1999) Biogenic volatile organic compound emissions (BVOCs) I. Identifications from three continental sites in the U.S. Chemosphere 38(9):2163–2187

    Google Scholar 

  92. Herrmann F et al (2010) Hydroxyl radical (OH) yields from the ozonolysis of both double bonds for five monoterpenes. Atmos Environ 44(28):3458–3464

    Google Scholar 

  93. Hoffmann T et al (1997) Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Chem 26(2):189–222

    Google Scholar 

  94. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55(2):378–390

    Google Scholar 

  95. Houghton RA et al (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9(12):5125–5142

    Google Scholar 

  96. Hov Ø et al (1983) Measurement and modeling of the concentrations of terpenes in coniferous forest air. J Geophys Res: Oceans 88(C15):10679–10688

    Google Scholar 

  97. Ion AC et al (2005) Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: sources and diel variations. Atmos Chem Phys 5(7):1805–1814

    Google Scholar 

  98. Janson R (1992) Monoterpene concentrations in and above a forest of Scots pine. J Atmos Chem 14(1–4):385–394

    Google Scholar 

  99. Janson R et al (2001) Biogenic emissions and gaseous precursors to forest aerosols. Tellus B 53(4):423–440

    Google Scholar 

  100. Jaoui M et al (2007) β-caryophyllinic acid: an atmospheric tracer for β-caryophyllene secondary organic aerosol. Geophys Res Lett 34(5):L05816

    Google Scholar 

  101. Jardine K et al (2011) Within-canopy sesquiterpene ozonolysis in Amazonia. J Geophys Res 116(D19):D19301

    Google Scholar 

  102. Jimenez JL et al (2009) Evolution of organic aerosols in the atmosphere. Science 326(5959):1525–1529

    Google Scholar 

  103. Jin Y et al (2002) How does snow impact the Albedo of vegetated land surfaces as analyzed with MODIS data? Geophys Res Lett, 29(10):12-11–12-14

    Google Scholar 

  104. Kamens RM et al (1982) Ozone–isoprene reactions: product formation and aerosol potential. Int J Chem Kinet 14(9):955–975

    Google Scholar 

  105. Kanakidou M et al (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5(4):1053–1123

    Google Scholar 

  106. Kanawade VP et al (2011) Isoprene suppression of new particle formation in a mixed deciduous forest. Atmos Chem Phys 11(12):6013–6027

    Google Scholar 

  107. Kavouras IG et al (1998) Formation of atmospheric particles from organic acids produced by forests. Nature 395(6703):683–686

    Google Scholar 

  108. Kavouras IG et al (1999) Formation and gas/particle partitioning of monoterpenes photo-oxidation products over forests. Geophys Res Lett 26(1):55–58

    Google Scholar 

  109. Kessler A, Baldwin IT (2001) Defensive function of Herbivore-Induced plant volatile emissions in nature. Science 291(5511):2141–2144

    Google Scholar 

  110. Kiendler-Scharr A et al (2009) New particle formation in forests inhibited by isoprene emissions. Nature 461(7262):381–384

    Google Scholar 

  111. Kourtchev I et al (2005) Observation of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from Hyytiälä, Finland. Atmos Chem Phys 5(10):2761–2770

    Google Scholar 

  112. Kroll JH et al (2005) Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys Res Lett 32(18):L18808

    Google Scholar 

  113. Kroll JH et al (2006) Secondary organic aerosol formation from isoprene photooxidation. Environ Sci Technol 40(6):1869–1877

    Google Scholar 

  114. Kroll JH, Seinfeld JH (2008) Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos Environ 42(16):3593–3624

    Google Scholar 

  115. Kulmala M et al (2013) Direct observations of atmospheric aerosol nucleation. Science 339(6122):943–946

    Google Scholar 

  116. Kulmala M et al (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35(2):143–176

    Google Scholar 

  117. Kurten T et al (2003) Estimation of different forest-related contributions to the radiative balance using observations in southern Finland. Boreal Environ Res 8:275–285

    Google Scholar 

  118. Kwok ESC et al (1996) Product formation from the reaction of the NO3 radical with isoprene and rate constants for the reactions of methacrolein and methyl vinyl ketone with the NO3 radical. Int J Chem Kinet 28(12):925–934

    Google Scholar 

  119. Laaksonen A et al (2008) The role of VOC oxidation products in continental new particle formation. Atmos Chem Phys 8(10):2657–2665

    Google Scholar 

  120. Lamb B et al (1987) A national inventory of biogenic hydrocarbon emissions. Atmosph Environ (1967) 21(8):1695–1705

    Google Scholar 

  121. Lambe AT et al (2013) Relationship between oxidation level and optical properties of secondary organic aerosol. Environ Sci Technol 47(12):6349–6357

    Google Scholar 

  122. Lange BM et al (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci 97(24):13172–13177

    Google Scholar 

  123. Lappalainen HK et al (2009) Day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy and their relation to environmental and biological factors. Atmos Chem Phys 9(15):5447–5459

    Google Scholar 

  124. Lean J, Warrilow DA (1989) Simulation of the regional climatic impact of Amazon deforestation. Nature 342:411–413

    Google Scholar 

  125. Lelieveld J et al (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452(7188):737–740

    Google Scholar 

  126. Lenton TM et al (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793

    Google Scholar 

  127. Leonard RE, Eschner AR (1968) Albedo of intercepted snow. Water Resour Res 4(5):931–935

    Google Scholar 

  128. Lichtenthaler HK et al (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400(3):271–274

    Google Scholar 

  129. Lihavainen H et al (2009) Observational signature of the direct radiative effect by natural boreal forest aerosols and its relation to the corresponding first indirect effect. J Geophys Res 114:D20206

    Google Scholar 

  130. Lin Y-H et al (2013) Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc Natl Acad Sci 110(17):6718–6723

    Google Scholar 

  131. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5(3):715–737

    Google Scholar 

  132. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone Damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127(4):1781–1787

    Google Scholar 

  133. Mahowald N et al (2011) Aerosol impacts on climate and biogeochemistry. Annu Rev Environ Resour 36(1):45–74

    Google Scholar 

  134. Malhi Y et al (2013) African rainforests: past, present and future. Philos Trans Royal Soc B: Biolog Sci 368(1625)

    Google Scholar 

  135. Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35(4):L04705

    Google Scholar 

  136. Mayaux P et al (2013) State and evolution of the African rainforests between 1990 and 2010. Philos Trans Royal Soc B: Biolog Sci 368(1625)

    Google Scholar 

  137. McFiggans G et al (2006) The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos Chem Phys 6(9):2593–2649

    Google Scholar 

  138. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. The Plant Cell Online 7(7):1015–1026

    Google Scholar 

  139. Meehl GA et al (2007) Global climate projections. In: Solomon S, Qin D, Manninget M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  140. Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(7242):1158–1162

    Google Scholar 

  141. Metzger A et al (2010) Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc Natl Acad Sci 107(15):6646–6651

    Google Scholar 

  142. Miettinen J et al (2011) Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob Change Biol 17(7):2261–2270

    Google Scholar 

  143. Mihelcic D et al (1993) Simultaneous measurements of peroxy and nitrate radicals at Schauinsland. J Atmos Chem 16(4):313–335

    Google Scholar 

  144. Monson RK et al (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    Google Scholar 

  145. Monteith JL, Unsworth MH (2008a) Microclimatology of Radiation (i). In: Principles of Environmental Physics. Academic Press, Boston, pp 86–99

    Google Scholar 

  146. Monteith JL, Unsworth MH (2008b) Micrometeorology (i). In: Principles of Environmental Physics, Academic Press, Boston pp 300–334

    Google Scholar 

  147. Morice CP et al (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res: Atmos 117(D8):D08101

    Google Scholar 

  148. Muller CH (1966) The role of chemical inhibition (Allelopathy) in vegetational composition. Bull Torrey Bot Club 93(5):332–351

    Google Scholar 

  149. Myhre G (2009) Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science 325(5937):187–190

    Google Scholar 

  150. Myhre G et al (2013) Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos Chem Phys 13(4):1853–1877

    Google Scholar 

  151. Nakayama T et al (2010) Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene. J Geophys Res: Atmos 115(D24):D24204

    Google Scholar 

  152. Nakicenovic N et al (2000) Special report on emission scenarios. In: Nakicenovic N, Swart R (eds)

    Google Scholar 

  153. Ng NL et al (2007) Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos Chem Phys 7(19):5159–5174

    Google Scholar 

  154. Niinemets Ü et al (2002) A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol 153(2):257–275

    Google Scholar 

  155. Niinemets Ü et al (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant, Cell Environ 22(11):1319–1335

    Google Scholar 

  156. NOAA (2013) Trends in atmospheric carbon dioxide. Retrieved 17/07/2013, from http://www.esrl.noaa.gov/gmd/ccgg/trends/

  157. O’Donnell D et al (2011) Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM. Atmos Chem Phys 11(16):8635–8659

    Google Scholar 

  158. O’Dowd CD et al (2002) Aerosol formation: atmospheric particles from organic vapours. Nature 416(6880):497–498

    Google Scholar 

  159. Odum JR et al (1996) Gas/Particle partitioning and secondary organic aerosol yields. Environ Sci Technol 30(8):2580–2585

    Google Scholar 

  160. Ogura K, Koyama T (1998) Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98(4):1263–1276

    Google Scholar 

  161. Oh KH et al (1967) Effect of various essential oils isolated from Douglas fir needles upon sheep and deer rumen microbial activity. Appl Microbiol 15:777–784

    Google Scholar 

  162. Okamoto RA et al (1981) Volatile terpenes in Sequoia sempervirens foliage. Changes in composition during maturation. J Agric Food Chem 29(2):324–326

    Google Scholar 

  163. Paasonen P et al (2013) Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat Geosci 6(6):438–442

    Google Scholar 

  164. Paasonen P et al (2010) On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation. Atmos Chem Phys 10(22):11223–11242

    Google Scholar 

  165. Pan Y et al (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993

    Google Scholar 

  166. Pandis SN et al (1991) Aerosol formation in the photooxidation of isoprene and β-pinene. Atmos Environ Part A. General Topics 25(5–6):997–1008

    Google Scholar 

  167. Pankow JF (1994) An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos Environ 28(2):185–188

    Google Scholar 

  168. Pankow JF (1994) An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos Environ 28(2):189–193

    Google Scholar 

  169. Parry ML et al (2007) Technical summary. In: Parry ML, Canziani OF, Palutikof JP, Linden VD, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  170. Paulson SE et al (1992) Atmospheric photooxidation of isoprene part I: the hydroxyl radical and ground state atomic oxygen reactions. Int J Chem Kinet 24(1):79–101

    Google Scholar 

  171. Paulson SE et al (1992) Atmospheric photooxidation of isoprene part II: the ozone-isoprene reaction. Int J Chem Kinet 24(1):103–125

    Google Scholar 

  172. Paulson SE et al (1997) Evidence for formation of OH radicals from the reaction of O3 with alkenes in the gas phase. Geophys Res Lett 24(24):3193–3196

    Google Scholar 

  173. Peeters J et al (2009) HOx radical regeneration in the oxidation of isoprene. Phys Chem Cheml Phys 11(28):5935–5939

    Google Scholar 

  174. Peeters J et al (2001) The detailed mechanism of the OH-initiated atmospheric oxidation of α-pinene: a theoretical study. Phys Chem Chem Phys 3(24):5489–5504

    Google Scholar 

  175. Penner JE et al (2001) Aerosols, their direct and indirect effects. In: Houghton JT, Ding Y, Griggset DJ et al (eds) Climate change 2001: the physical science basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  176. Penner JE et al (2011) Satellite methods underestimate indirect climate forcing by aerosols. Proc Natl Acad Sci 108(33):13404–13408

    Google Scholar 

  177. Peters GP et al (2013) The challenge to keep global warming below 2 degrees C. Nature Clim Change 3(1):4–6

    Google Scholar 

  178. Petters MD et al (2006) Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophys Res Lett 33(24):L24806

    Google Scholar 

  179. Pierce JR et al (2012) Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley. Atmos Chem Phys 12(7):3147–3163

    Google Scholar 

  180. Pierce JR et al (2011) Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmos Chem Phys 11(17):9019–9036

    Google Scholar 

  181. Pierce T et al (1998) Influence of increased isoprene emissions on regional ozone modeling. J Geophys Res: Atmos 103(D19):25611–25629

    Google Scholar 

  182. Pierce TE, Waldruff PS (1991) PC-BEIS: a personal computer version of the biogenic emissions inventory system. J Air Waste Manag Assoc 41(7):937–941

    Google Scholar 

  183. Pongratz J et al (2011) Past land use decisions have increased mitigation potential of reforestation. Geophys Res Lett 38(15):L15701

    Google Scholar 

  184. Pongratz J et al (2010) Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys Res Lett 37(8):L08702

    Google Scholar 

  185. Prentice IC et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggset DJ et al (eds.) Climate change 2001: the physical science basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  186. Presto AA et al (2005) Secondary organic aerosol production from terpene ozonolysis 2 effect of nox concentration. Environ Sci Technol 39(18):7046–7054

    Google Scholar 

  187. Quaas J et al (2008) Satellite-based estimate of the direct and indirect aerosol climate forcing. J Geophys Res: Atmosph 113(D5):D05204

    Google Scholar 

  188. Quaas J et al (2009) Aerosol indirect effects—general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9(22):8697–8717

    Google Scholar 

  189. Ramaswamy V et al (2001) Radiative forcing. In: Houghton JT, Ding Y, Griggset DJ al (eds ) Climate change 2001: the physical science basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  190. Rap A et al (2013) Natural aerosol direct and indirect radiative effects. Geophys Res Lett 40:3297–3301

    Google Scholar 

  191. Rasmann S et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737

    Google Scholar 

  192. Rasmussen RA (1972) What do the hydrocarbons from trees contribute to air pollution? J Air Pollution Control Assoc 22(7):537–543

    Google Scholar 

  193. Rasmussen RA, Jones CA (1973) Emission isoprene from leaf discs of hamamelis. Phytochemistry 12(1):15–19

    Google Scholar 

  194. Rasmussen RA, Went FW (1965) Volatile organic material of plant origin in the atmosphere. Proc Natl Acad Sci 53:215–220

    Google Scholar 

  195. Riccobono F et al (2012) Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth. Atmos Chem Phys 12(20):9427–9439

    Google Scholar 

  196. Riipinen I et al (2011) Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos Chem Phys 11(8):3865–3878

    Google Scholar 

  197. Riipinen I et al (2012) The contribution of organics to atmospheric nanoparticle growth. Nature Geosci 5(7):453–458

    Google Scholar 

  198. Robinson DA, Kukla G (1985) Maximum surface albedo of seasonally snow-covered lands in the northern hemisphere. J Climate Appl Meteorol 24(5):402–411

    Google Scholar 

  199. Rockstrom J et al (2009) A safe operating space for humanity. Nature 461(7263):472–475

    Google Scholar 

  200. Rogelj J et al (2013) 2020 emissions levels required to limit warming to below 2 degrees C. Nature Clim Change 3(4):405–412

    Google Scholar 

  201. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574

    Google Scholar 

  202. Rosenstiel TN et al (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421(6920):256–259

    Google Scholar 

  203. Saatchi SS et al (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108(24):9899–9904

    Google Scholar 

  204. Sanadze GA, Kursanov AL (1966) On certain conditions of the evolution of the diene C5H8 from poplar leaves. Sov Plant Physiol 13:184–189

    Google Scholar 

  205. Schulz M et al (2006) Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos Chem Phys 6(12):5225–5246

    Google Scholar 

  206. Seinfeld JH, Pandis SN (2006) Chemistry of the Troposphere. In: atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York pp 204–279

    Google Scholar 

  207. Sharkey TD et al (1991) High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant Cell Environ 14(3):333–338

    Google Scholar 

  208. Silver GM, Fall R (1991) Enzymatic Synthesis of Isoprene from Dimethylallyl Diphosphate in Aspen leaf extracts. Plant Physiol 97(4):1588–1591

    Google Scholar 

  209. Snyder PK et al (2004) Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 23:279–302

    Google Scholar 

  210. Solomon S et al (2007) Technical Summary. In: Solomon S, Qin D, Manninget M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  211. Spracklen DV et al (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(7415):282–285

    Google Scholar 

  212. Spracklen DV et al (2008) Boreal forests, aerosols and the impacts on clouds and climate. Philos Trans Royal Soc A 366:4613–4626

    Google Scholar 

  213. Spracklen DV et al (2011) Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos Chem Phys 11(23):12109–12136

    Google Scholar 

  214. Staudt M et al (1997) Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos Environ 31(1):145–156

    Google Scholar 

  215. Steinbrecher R et al (1993) Terpenoid emissions from common oak (Quercus robur L.) and Norway Spruce (Picea abies L. Karst.). Air pollution research report 47: Joint Workshop CEC/BIATEX of EUROTRAC: 251–259

    Google Scholar 

  216. Stewart DJ et al (2013) The kinetics of the gas-phase reactions of selected monoterpenes and cyclo-alkenes with ozone and the NO3 radical. Atmos Environ 70:227–235

    Google Scholar 

  217. Street RA et al (1997) Effect of habitat and age on variations in volatile organic compound (VOC) emissions from Quercus ilex and Pinus pinea. Atmos Environ 31(1):9–100

    Google Scholar 

  218. Sugarman N, Daugherty PM (1956) Oxidation of alpha-pinene. Ind Eng Chem 48(10):1831–1835

    Google Scholar 

  219. Swann ALS et al (2012) Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc Natl Acad Sci 109(3):712–716

    Google Scholar 

  220. Taraborrelli D et al (2012) Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nature Geosci 5(3):190–193

    Google Scholar 

  221. Thomas G, Rowntree PR (1992) The boreal forests and climate. Q J Royal Meteorol Soc 118(505):469–497

    Google Scholar 

  222. Tingey D et al (1981) Effects of environmental conditions on isoprene emission from live oak. Planta 152(6):565–570

    Google Scholar 

  223. Tingey DT et al (1979) The influence of light and temperature on isoprene emission rates from live oak. Physiol Plant 47(2):112–118

    Google Scholar 

  224. Tingey DT et al (1980) Influence of light and temperature on monoterpene emission rates from Slash pine. Plant Physiol 65(5):797–801

    Google Scholar 

  225. Trenberth KE et al (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311–323

    Google Scholar 

  226. Trenberth KE et al (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manninget M, et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  227. Tuazon EC, Atkinson R (1990) A product study of the gas-phase reaction of Isoprene with the OH radical in the presence of NOx. Int J Chem Kinet 22(12):1221–1236

    Google Scholar 

  228. Tunved P et al (2006) High natural aerosol loading over boreal forests. Science 312(5771):261–263

    Google Scholar 

  229. Tunved P et al (2008) The natural aerosol over Northern Europe and its relation to anthropogenic emissions—implications of important climate feedbacks. Tellus B 60(4):473–484

    Google Scholar 

  230. Twomey S (1977) Influence of pollution on shortwave albedo clouds. J Atmos Sci 34(7):1149–1152

    Google Scholar 

  231. UNFCCC (2009) Copenhagen accord

    Google Scholar 

  232. UNFCCC (2010) Report of the conference of the parties on its sixteenth session. United Nations

    Google Scholar 

  233. UNFCCC (2012) Report of the Conference of the Parties on its eighteenth session. United Nations

    Google Scholar 

  234. Unger N et al (2013) Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon–chemistry–climate model. Atmos Chem Phys Discuss 13(7):17717–17791

    Google Scholar 

  235. United Nations (2013) Retrieved 12/07/2013, from http://www.un-redd.org

  236. van der Werf GR et al (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303(5654):73–76

    Google Scholar 

  237. Verheggen B et al (2007) α-pinene oxidation in the presence of seed aerosol: estimates of nucleation rates, growth rates, and yield. Environ Sci Technol 41(17):6046–6051

    Google Scholar 

  238. Vickers CE et al (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291

    Google Scholar 

  239. Wang S et al (2007) Carbon sinks and sources in China’s forests during 1901–2001. J Environ Manage 85(3):524–537

    Google Scholar 

  240. Wang W et al (2005) Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 19(10):1343–1351

    Google Scholar 

  241. Weber RJ et al (2007) A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J Geophys Res 112(D13):D13302

    Google Scholar 

  242. Went FW (1960) Blue hazes in the atmosphere. Nature 187:641–643

    Google Scholar 

  243. Went FW (1960) Organic matter in the atmosphere, and its possible relation to petroleum formation. Proc Natl Acad Sci 46:212–221

    Google Scholar 

  244. Williams M (2003) Deforesting the earth. The University of Chigaco Press, Chigaco

    Google Scholar 

  245. Winterhalter R et al (2000) Products and mechanism of the gas phase reaction of ozone with β-pinene. J Atmos Chem 35(2):165–197

    Google Scholar 

  246. Wise M et al (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324(5931):1183–1186

    Google Scholar 

  247. Yli-Juuti T et al (2011) Growth rates of nucleation mode particles in Hyytiälä during 2003–2009: variation with particle size, season, data analysis method and ambient conditions. Atmos Chem Phys 11(24):12865–12886

    Google Scholar 

  248. Yokouchi Y, Ambe, Y (1985) Aerosols formed from the chemical reaction of monoterpenes and ozone. Atmos Environ (1967), 19(8):1271–1276

    Google Scholar 

  249. Yu J et al (1999) Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products. J Atmos Chem 34(2):207–258

    Google Scholar 

  250. Yu J et al (1998) Identification of products containing −COOH, −OH, and −CO in atmospheric oxidation of hydrocarbons. Environ Sci Technol 32(16):2357–2370

    Google Scholar 

  251. Yu J et al (1999) Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres. Geophys Res Lett 26(8):1145–1148

    Google Scholar 

  252. Zhang Q et al (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys Res Lett 34(13):L13801

    Google Scholar 

  253. Zhang R et al (2009) Formation of nanoparticles of blue haze enhanced by anthropogenic pollution. Proc Natl Acad Sci 106(42):17650–17654

    Google Scholar 

  254. Zhang X et al (2012) Diffusion-limited versus quasi-equilibrium aerosol growth. Aerosol Sci Technol 46(8):874–885

    Google Scholar 

  255. Zickfeld K et al (2009) Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc Natl Acad Sci USA 106(38):16129–16134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Scott .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scott, C.E. (2014). Introduction. In: The Biogeochemical Impacts of Forests and the Implications for Climate Change Mitigation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07851-9_1

Download citation

Publish with us

Policies and ethics