Skip to main content

A Novel Resource-Efficient Privacy Amplification Scheme: Towards Ground-Satellite Quantum Key Distribution Post-processing

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8491))

  • 2078 Accesses

Abstract

Quantum key distribution (QKD) provides the intrinsically unconditional secure method to generate and transfer cryptographic keys based on laws of quantum mechanics. The introduction of QKD technology in satellite communications has changed the way to understand them, permitting secure and reliable global communications. In a real-life situation, however, ground-satellite QKD needs to handle a critical issue: the problem of on-board resource insufficiency. Privacy amplification (PA) determining the final key rate is a significant procedure in QKD post-processing. Though fast Fourier transform (FFT) technology can expedite PA procedure, it costs more computing and storage resources. With a novel division and aggregation scheduling (DAS) policy, we made some modifications to FFT implementation and proposed a resource-efficient PA scheme (called as DAS-FFT PA), which efficiently reduces the resource overhead of implementing overall PA module. Our experimental results demonstrate and confirm that our proposed scheme fulfills the expected target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liang, L., Iyengar, S., Cruickshank, H., Sun, Z., Kulatunga, C., Fairhurst, G.: Security for flute over satellite networks. In: WRI International Conference on Communications and Mobile Computing, CMC 2009, vol. 3, pp. 485–491. IEEE (2009)

    Google Scholar 

  2. Mahmoud, B., Larrieu, N., Pirovano, A.: An aeronautical data link security overview. In: IEEE/AIAA 28th Digital Avionics Systems Conference, DASC 2009, p. 4-A. IEEE (2009)

    Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175(150), p. 8 (1984)

    Google Scholar 

  4. Gisin, N., Ribordy, G., Zbinden, H.: Quantum cryptography. Reviews of Modern Physics 74, 145–195 (2001)

    Article  Google Scholar 

  5. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New Journal of Physics 4(1), 43 (2002)

    Article  Google Scholar 

  6. Peng, C.Z., Yang, T., Bao, X.H., Zhang, J., Jin, X.M., Feng, F.Y., ... Pan, J.W.: Experimental free-space distribution of entangled photon pairs over 13 km: towards ground-satellite global quantum communication. Physical Review Letters 94(15), 150501 (2005)

    Google Scholar 

  7. Marcikic, I., Lamas-Linares, A., Kurtsiefer, C.: Free-space quantum key distribution with entangled photons. Applied Physics Letters 89(10), 101122 (2006)

    Article  Google Scholar 

  8. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., ... Weinfurter, H.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Physical Review Letters 98(1), 010504 (2007)

    Google Scholar 

  9. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., ... Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nature Physics 3(7), 481–486 (2007)

    Google Scholar 

  10. Fedrizzi, A., Ursin, R., Herbst, T., Nespoli, M., Prevedel, R., Scheidl, T., ... Zeilinger, A.: High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Physics 5(6), 389–392 (2009)

    Google Scholar 

  11. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., ... Pan, J.W.: Experimental free-space quantum teleportation. Nature Photonics 4(6), 376–381 (2010)

    Google Scholar 

  12. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Reviews of Modern Physics 81(3), 1301 (2009)

    Article  Google Scholar 

  13. Villoresi, P., Jennewein, T., Tamburini, F., Aspelmeyer, M., Bonato, C., Ursin, R., ... Barbieri, C.: Experimental verification of the feasibility of a quantum channel between space and Earth. New Journal of Physics 10(3), 033038 (2008)

    Google Scholar 

  14. Bonato, C., Tomaello, A., Da Deppo, V., Naletto, G., Villoresi, P.: Feasibility of satellite quantum key distribution. New Journal of Physics 11(4), 45017 (2009)

    Article  Google Scholar 

  15. Nordholt, J.E., Hughes, R.J., Morgan, G.L., Peterson, C.G., Wipf, C.C.: Present and future free-space quantum key distribution. In: High-Power Lasers and Applications, pp. 116–126. International Society for Optics and Photonics (2002)

    Google Scholar 

  16. Rarity, J.G., Tapster, P.R., Gorman, P.M., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New Journal of Physics 4(1), 82 (2002)

    Article  Google Scholar 

  17. Hughes, R.J., Nordholt, J.E., Mc Cabe, K.P., Newell, R.T., Pterson, C.G.: Ground-satellite quantum communications. In: UQCC 2010, Los Alamos National Laboratory, LANL (2010)

    Google Scholar 

  18. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Transactions on Information Theory 41, 1915–1923 (1995)

    Article  MATH  Google Scholar 

  19. Gray, R.M.: Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and Information Theory 2 (2006)

    Google Scholar 

  20. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

    Google Scholar 

  21. Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU Press (2012)

    Google Scholar 

  22. Liu, B., Liu, B., Zhao, B., Zou, D., Wu, C., Yu, W., You, I.: A real-time privacy amplification scheme in quantum key distribution. In: Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl, E., You, I. (eds.) ICT-EurAsia 2013. LNCS, vol. 7804, pp. 453–458. Springer, Heidelberg (2013)

    Google Scholar 

  23. Liu, B., Zhao, B., Wei, Z., Wu, C., Su, J., Yu, W., ... Sun, S.: Qphone: a quantum security VoIP phone. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, pp. 477–478. ACM (2013)

    Google Scholar 

  24. Zou, D., Zhao, B., Wu, C., Liu, B., Yu, W., Ma, X., Zou, H.: CLIP: A Distributed Emulation Platform for Research on Information Reconciliation. In: 2012 15th International Conference on Network-Based Information Systems (NBiS), pp. 721–726. IEEE Press, New York (2012)

    Chapter  Google Scholar 

  25. Takesue, H., Nam, S.W., Zhang, Q., Hadfield, R.H., Honjo, T., Tamaki, K., Yamamoto, Y.: Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nature Photonics 1, 343–348 (2007)

    Article  Google Scholar 

  26. Stucki, D., Walenta, N., Vannel, F., Thew, R.T., Gisin, N., Zbinden, H., ... Ten, S.: High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New Journal of Physics 11(7), 75003 (2009)

    Google Scholar 

  27. Liu, Y., Chen, T.Y., Wang, J., Cai, W.Q., Wan, X., Chen, L.K., ... Pan, J.W.: Decoy-state quantum key distribution with polarized photons over 200 km. Optics Express 18(8), 8587–8594 (2010)

    Google Scholar 

  28. Sun, S.H., Ma, H.Q., Han, J.J., Liang, L.M., Li, C.Z.: Quantum key distribution based on phase encoding in long-distance communication fiber. Optics Letters 35(8), 1203–1205 (2010)

    Article  Google Scholar 

  29. Smith, D.R.: The design of divide and conquer algorithms. Science of Computer Programming 5, 37–58 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Z., Wu, C., Zhao, B., Liu, B. (2014). A Novel Resource-Efficient Privacy Amplification Scheme: Towards Ground-Satellite Quantum Key Distribution Post-processing. In: Cai, Z., Wang, C., Cheng, S., Wang, H., Gao, H. (eds) Wireless Algorithms, Systems, and Applications. WASA 2014. Lecture Notes in Computer Science, vol 8491. Springer, Cham. https://doi.org/10.1007/978-3-319-07782-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07782-6_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07781-9

  • Online ISBN: 978-3-319-07782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics