Advertisement

The Beginnings of Molecular Biology

  • Milton W. TaylorEmail author
Chapter

Abstract

This chapter describes the beginnings of molecular biology with the discovery of bacterial transformation and identification of DNA as the genetic material. The role that bacteriophage and the Cold Spring Harbor Phage group played in this development are emphasized. The discovery of transducing phage and the regulation of gene expression in the temperate phage lambda led to models of transcriptional and translational control. The discovery of lysogeny, and the integration of the bacteriophage into the host chromosome, ultimately led to the idea of cancer viruses being integrated into the chromosome and the oncogene model of cancer.

Keywords

Cold Spring Harbor Mouse Mammary Tumor Virus Phage Particle Phage Genome Bacterial Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stanley, W. M. (1935). Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science, 81(2113), 644–645.PubMedCrossRefGoogle Scholar
  2. 2.
    Schlesinger, M. (1933). BiochemZ, 264(6).Google Scholar
  3. 3.
    Schlesinger, M. (1936). The Feulgen reaction of the bacteriophage substance. Nature, 138, 508–509.CrossRefGoogle Scholar
  4. 4.
    Ellis, E. L., & Delbruck, M. (1939). The growth of bacteriophage. Journal of General Physiology, 22(3), 365–384.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Avery, O. T., Macleod, C. M., & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. Journal of Experimental Medicine, 79(2), 137–158.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hershey, A. D., & Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36(1), 39–56.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ruska, E. (1987). Nobel lecture. The development of the electron microscope and of electron microscopy. Bioscience Reports, 7(8), 607–629.PubMedCrossRefGoogle Scholar
  8. 8.
    Luria, S. E., Anderson, T. F. (1942). The identification and characterization of bacteriophages with the electron microscope. Proceedings of the National Academy of Sciences of the United States of America, 28(4):127–130, 121.Google Scholar
  9. 9.
    Yanofsky, C., Carlton, B. C., Guest, J. R., Helinski, D. R., & Henning, U. (1964). On the colinearity of gene structure and protein structure. Proceedings of the National Academy of Sciences of the United States of America, 51, 266–272.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Nirenberg, M. W. (1963). The genetic code II. Scientific American, 208, 80–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Nirenberg, M. W., Matthaei, J. H., Jones, O. W., Martin, R. G., & Barondes, S. H. (1963). Approximation of genetic code via cell-free protein synthesis directed by template RNA. Federation Proceedings, 22, 55–61.PubMedGoogle Scholar
  12. 12.
    Brenner, S., Stretton, A. O., & Kaplan, S. (1965). Genetic code: the ‘nonsense’ triplets for chain termination and their suppression. Nature, 206(988), 994–998.PubMedCrossRefGoogle Scholar
  13. 13.
    Broker, T. R., & Doermann, A. H. (1975). Molecular and genetic recombination of bacteriophage T4. Annual Review of Genetics, 9, 213–244.PubMedCrossRefGoogle Scholar
  14. 14.
    Edgar, R. S., & Lielausis, I. (1964). Temperature-sensitive mutants of bacteriophage T4d: Their isolation and genetic characterization. Genetics, 49, 649–662.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Wood, W. B. (1980). Bacteriophage T4 morphogenesis as a model for assembly of subcellular structure. The Quarterly Review of Biology, 55(4), 353–367.PubMedCrossRefGoogle Scholar
  16. 16.
    Lwoff, A. (1953). Lysogeny. Bacteriological Reviews, 17(4), 269–337.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Morse, M. L., Lederberg, E. M., & Lederberg, J. (1956). Transduction in Escherichia Coli K-12. Genetics, 41(1), 142–156.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Campbell, A. (1965). The steric effect in lysogenization by bacteriophage lambda. I. Lysogenization of a partially diploid strain of Escherichia coli K-12. Virology, 27(3), 329–339.PubMedCrossRefGoogle Scholar
  19. 19.
    Campbell, A. (1965). The steric effect in lysogenization by bacteriophage lambda. II. Chromosomal attachment of the b2 mutant. Virology, 27(3), 340–345.PubMedCrossRefGoogle Scholar
  20. 20.
    Campbell, A. (1958). The different kinds of transducing particles in the lambda-gal system. Cold Spring Harbor Symposia on Quantitative Biology, 23, 83–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Taylor, M. W., & Yanofsky, C. (1966). Chromosomal relocation of prophage-associated bacterial genes. Journal of Bacteriology, 91(4), 1469–1476.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Brenner, S., Jacob, F., & Meselson, M. (1961). An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 190, 576–581.PubMedCrossRefGoogle Scholar
  23. 23.
    Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.PubMedCrossRefGoogle Scholar
  24. 24.
    Ptashne, M. (1967). Specific binding of the lambda phage repressor to lambda DNA. Nature, 214(5085), 232–234.PubMedCrossRefGoogle Scholar
  25. 25.
    Ptashne, M. (1967). Isolation of the lambda phage repressor. Proceedings of the National Academy of Sciences of the United States of America, 57(2), 306–313.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Huebner, R. J., & Todaro, G. J. (1969). Oncogenes of RNA tumor viruses as determinants of cancer. Proceedings of the National Academy of Sciences of the United States of America, 64(3), 1087–1094.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Shope, R. E. (1932). A filtrable virus causing a tumor-like condition in rabbits and its relationship to virus myxomatosum. Journal of Experimental Medicine, 56(6), 803–822.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Bittner, J. J. (1936). Some possible effects of nursing on the mammary gland tumor incidence in mice. Science, 84(2172), 162.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Indiana UniversityBloomingtonUSA

Personalised recommendations